
Basics of MVVM in WPF

In this blog post, you learn how easy it is to use the Model-View-View-Model
(MVVM) design pattern in WPF applications. This blog post is a step-by-step
illustration of how to build a WPF application to display a list of users. You are going
to perform the following steps.

• Create some base classes needed for every WPF application
• Create a local SQL Server express database and add a User table
• Load users directly using code-behind on a WPF user control
• Load users on a WPF user control using a view model class

Create WPF Application
To start, write code to load a list box control in WPF without using the MVVM design
pattern. Create a new WPF project named WPF.Sample.

Create CommonBase Class
Right mouse-click on your WPF project and select Add | New Folder… Name the
folder Common.
Add a new class file within this folder called CommonBase.cs. Replace the code
within this file with the following code.

Basics of MVVM in WPF

2 Basics of MVVM in WPF
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

using System.ComponentModel;
using System.Reflection;

namespace Common.Library
{
 /// <summary>
 /// This class implements the INotifyPropertyChanged event
 /// </summary>
 public class CommonBase : INotifyPropertyChanged
 {
 /// <summary>
 /// The PropertyChanged Event to raise to any UI object
 /// </summary>
 public event PropertyChangedEventHandler PropertyChanged;

 /// <summary>
 /// The PropertyChanged Event to raise to any UI object
 /// The event is only invoked if data binding is used
 /// </summary>
 /// <param name="propertyName">The property name
 that is changing</param>
 protected void RaisePropertyChanged(string propertyName)
 {
 // Grab a handler
 PropertyChangedEventHandler handler = this.PropertyChanged;

 // Only raise event if handler is connected
 if (handler != null) {
 PropertyChangedEventArgs args =
 new PropertyChangedEventArgs(propertyName);

 // Raise the PropertyChanged event.
 handler(this, args);
 }
 }
 }
}

Create ViewModelBase Class
Right mouse-click on the Common folder again and add another new class file
named ViewModelBase.cs. Replace all the code within this file with the following
code.

namespace Common.Library
{
 /// <summary>
 /// Base class for all view models
 /// </summary>
 public class ViewModelBase : CommonBase
 {
 }
}

Create Local Database

Basics of MVVM in WPF 3
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Create Local Database
You can create your own SQL Server database using Visual Studio.
Add a folder to your project named App_Data.
Right mouse-click on the App_Data folder and select Add | New Item…
Select Data | Service-based Database

Set the name to MVVMSample.mdf and click the Add button.
Double-click on the MVVMSample.mdf file that is created and the Server Explorer
window will open up.
Right mouse-click on the Tables folder and select New Query

Basics of MVVM in WPF

4 Basics of MVVM in WPF
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Put the following code into the query window.

CREATE TABLE [dbo].[User] (
 [UserId] INT IDENTITY (1, 1) NOT NULL,
 [UserName] NVARCHAR (50) NOT NULL,
 [Password] NVARCHAR (50) NOT NULL,
 [FirstName] NVARCHAR (50) NOT NULL,
 [LastName] NVARCHAR (50) NOT NULL,
 [EmailAddress] NVARCHAR (255) NOT NULL,
 PRIMARY KEY CLUSTERED ([UserId] ASC)
);

Click the Execute button to add this table to the database

Expand the Tables folder to view the new table.
Right mouse-click on Tables folder and select Refresh.
Right mouse-click on the table and select Show Table Data from the menu.
Enter the following data into this table.
NOTE: You don't fill in the UserId. That is created automatically for you.

Add Entity Framework Classes

Basics of MVVM in WPF 5
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Add User Data

UserId UserName Password FirstName LastName EmailAddress

1 PShaffer P@ssw0rd Paul Shaffer PShaffer@netinc.com

2 JSmith P@ssw0rd John Smith JSmith@netinc.com

3 BJones P@ssw0rd Bruce Jones BJones@netinc.com

Add Entity Framework Classes
Right mouse-click on the WPF.Sample project and select Manage NuGet
Packages…
Click the Browse tab and locate the EntityFramework by Microsoft.
Install that package into your WPF project.

Create Folders
Add a new folder called EntityClasses.
Add a new folder called Models.

Create a User Entity Class
Right mouse-click on the EntityClasses folder and create a class called User.cs.
Add the following code within this file.

Basics of MVVM in WPF

6 Basics of MVVM in WPF
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;
using Common.Library;

namespace WPF.Sample
{
 [Table("User", Schema = "dbo")]
 public class User : CommonBase
 {
 private int _UserId;
 private string _UserName = string.Empty;
 private string _Password = string.Empty;
 private string _FirstName = string.Empty;
 private string _LastName = string.Empty;
 private string _EmailAddress = string.Empty;
 private bool _IsLoggedIn = false;

 [Required]
 [Key]
 public int UserId
 {
 get { return _UserId; }
 set {
 _UserId = value;
 RaisePropertyChanged("UserId");
 }
 }

 [Required]
 public string UserName
 {
 get { return _UserName; }
 set {
 _UserName = value;
 RaisePropertyChanged("UserName");
 }
 }

 [Required]
 public string Password
 {
 get { return _Password; }
 set {
 _Password = value;
 RaisePropertyChanged("Password");
 }
 }

 [Required]
 public string FirstName
 {
 get { return _FirstName; }
 set {
 _FirstName = value;
 RaisePropertyChanged("FirstName");
 }

Add Entity Framework Classes

Basics of MVVM in WPF 7
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

 }

 [Required]
 public string LastName
 {
 get { return _LastName; }
 set {
 _LastName = value;
 RaisePropertyChanged("LastName");
 }
 }

 [Required]
 public string EmailAddress
 {
 get { return _EmailAddress; }
 set {
 _EmailAddress = value;
 RaisePropertyChanged("EmailAddress");
 }
 }

 [NotMapped]
 public bool IsLoggedIn
 {
 get { return _IsLoggedIn; }
 set {
 _IsLoggedIn = value;
 RaisePropertyChanged("IsLoggedIn");
 }
 }
 }
}

Create a DbContext Class
Right mouse-click on the WPF.Sample project and add a new folder named
Models.
Right mouse-click on the Models folder and create a new class called
SampleDbContext.cs.
Add the following code into this file.

Basics of MVVM in WPF

8 Basics of MVVM in WPF
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

using System.Data.Entity;

namespace WPF.Sample
{
 public partial class SampleDbContext : DbContext
 {
 public SampleDbContext() : base("name=MVVMSample")
 {
 }

 public virtual DbSet<User> Users { get; set; }
 }
}

Add a Connection String
To use the data layer from WPF.Sample project, you need to add a connection
string and tell the Entity Framework where to find the database you created.
Open the App.config file in the WPF.Sample project.
Add the following section.

<connectionStrings>
 <add name="MVVMSample"
 connectionString="Server=(localdb)\MSSQLLocalDB;
 AttachDbFilename=|DataDirectory|MVVMSample.mdf;
 Database=MVVMSample;Trusted_Connection=Yes;"
 providerName="System.Data.SqlClient" />
</connectionStrings>

Set DataDirectory
If you are using a local SQL Server express database you created within the
App_Data folder of your project, you need to set the "DataDirectory" domain
property to the path of where the database is located. You do this one time when
your WPF application starts up. It is this domain property that is used to replace the
|DataDirectory| placeholder you see in the connection string in the App.config file.
Open the App.xaml.cs file and override the OnStartup event within the App class.

Add a User List User Control

Basics of MVVM in WPF 9
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

protected override void OnStartup(StartupEventArgs e)
{
 base.OnStartup(e);

 // Set the DataDirectory for Entity Framework
 string path = Environment.CurrentDirectory;
 path = path.Replace(@"\bin\Debug", "");
 path += @"\App_Data\";

 AppDomain.CurrentDomain.SetData("DataDirectory", path);
}

Add a User List User Control
Create a new folder named UserControls.
Right mouse-click on the UserControls folder and add a user control named
UserListControl to this project. Modify this user control to look like the following:

<UserControl x:Class="WPF.Sample.UserControls.UserListControl"
 ... XML namespaces here
 mc:Ignorable="d"
 d:DesignHeight="450"
 d:DesignWidth="800"
 Loaded="UserControl_Loaded">
 <ListView Name="lstData"
 ItemsSource="{Binding}">
 <ListView.View>
 <GridView>
 <GridViewColumn Header="User ID"
 Width="Auto"
 DisplayMemberBinding="{Binding Path=UserId}" />
 <GridViewColumn Header="User Name"
 Width="Auto"
 DisplayMemberBinding="{Binding Path=UserName}" />
 <GridViewColumn Header="First Name"
 Width="Auto"
 DisplayMemberBinding="{Binding Path=FirstName}" />
 <GridViewColumn Header="Last Name"
 Width="Auto"
 DisplayMemberBinding="{Binding Path=LastName}" />
 <GridViewColumn Header="Email"
 Width="Auto"
 DisplayMemberBinding="{Binding Path=EmailAddress}" />
 </GridView>
 </ListView.View>
 </ListView>
</UserControl>

Be sure to create the UserControl_Loaded event.

Basics of MVVM in WPF

10 Basics of MVVM in WPF
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Add Code to Load Users
In the code behind the UserListControl.xaml.cs file, add a using statement.

using System.Linq;

Modify the UserControl_Loaded event procedure to call a method named
LoadUsers(). Create the LoadUsers() method immediately after the
UserControl_Loaded event.

private void UserControl_Loaded(object sender,
 System.Windows.RoutedEventArgs e)
{
 LoadUsers();
}

private void LoadUsers()
{
 SampleDbContext db = null;

 try {
 db = new SampleDbContext();

 lstData.DataContext = db.Users.ToList();
 }
 catch (Exception ex) {
 System.Diagnostics.Debug.WriteLine(ex.ToString());
 }
}

The code in the LoadUsers() method uses the Entity Framework to retrieve user
data from the User table. Apply the ToList() method in order to retrieve a local copy
of the data that is bindable to any WPF control. Assign that list of users to the
DataContext property of the ListView control you named lstData.
On the ListView control, you set the ItemsSource property to {Binding}. This tells the
list box that you will be binding the data at runtime by setting the DataContext
property. Once you set the DataContext property, WPF binds each row of data to
the template you created in the ListView.

Modify the Main Window
On the MainWindow.xaml, add the following within the <Grid> element.

Modify the Main Window

Basics of MVVM in WPF 11
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <Menu Grid.Row="0"
 IsMainMenu="True">
 <MenuItem Header="_File">
 <MenuItem Header="E_xit"
 Click="MenuExit_Click" />
 </MenuItem>
 <MenuItem Header="Users"
 Click="MenuUsers_Click" />
 </Menu>
 <!-- Content Area -->
 <Grid Grid.Row="1"
 Margin="10"
 HorizontalAlignment="Left"
 VerticalAlignment="Top"
 Name="contentArea" />
</Grid>

Open the MainWindow.xaml.cs file.
Add a using statement.

using WPF.Sample.UserControls;

Create the MenuUserList_Click event procedure. Add the following code:

private void MenuExit_Click(object sender, RoutedEventArgs e)
{
 this.Close();
}

private void MenuUsers_Click(object sender, RoutedEventArgs e)
{
 contentArea.Children.Add(new UserListControl());
}

Try it Out
Run the application and view the users.

Basics of MVVM in WPF

12 Basics of MVVM in WPF
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

The Problem
That is all there is to writing the code behind and having it load data from a User
table. The problem with the above code is that to test this code, someone must run
the program and verify that this code works as it is supposed to. If you make a
change to the database or to the UI, you will then need to have someone run the
application again to ensure it still works. You must repeat this test each time a
change is made. This becomes very tedious and time consuming for the developer
and the tester.

Use MVVM to Load Users
Now that you have users loading into a list view control using code behind, let's now
move this code into a view model class and use data binding. Right mouse-click on
the project and add a new folder named ViewModels. Right mouse-click on the
ViewModels folder and add a new class named UserListViewModel.cs. You are
going to add a property to this view model class that is an ObservableCollection of
User objects. Add the code below to this new file you created.

Use MVVM to Load Users

Basics of MVVM in WPF 13
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

using System;
using System.Collections.ObjectModel;
using Common.Library;

namespace WPF.Sample.ViewModels
{
 public class UserListViewModel : ViewModelBase
 {
 public UserListViewModel() : base()
 {
 LoadUsers();
 }

 private ObservableCollection<User> _Users =
 new ObservableCollection<User>();

 public ObservableCollection<User> Users
 {
 get { return _Users; }
 set {
 _Users = value;
 RaisePropertyChanged("Users");
 }
 }

 Public virtual void LoadUsers()
 {
 SampleDbContext db = null;

 try {
 db = new SampleDbContext();

 Users = new ObservableCollection<User>(db.Users);
 }
 catch (Exception ex) {
 System.Diagnostics.Debug.WriteLine(ex.ToString());
 }
 }
 }
}

The code in the UserListViewModel class is not that much more code than you
wrote in the code behind.

Bind UserListViewModel Class to XAML
Once you have the UserListViewModel class created, bind this class to your user
control. Any WPF user control (or Window) may create an instance of any class in
your application within XAML. To do this, you need to do two things.

1. Create an XML namespace to reference a namespace in your C# code
2. Create an instance of the class within that namespace and assign a key

value to it

Basics of MVVM in WPF

14 Basics of MVVM in WPF
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Open the UserListControl.xaml file and add an XML namespace (See Figure 1) as
shown in the code in bold to reference the namespace that the UserListViewModel
is created within.

<UserControl x:Class="WPF.Sample.UserControls.UserListControl"
 xmlns="http://schemas.microsoft.com/..."
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:mc="http://schemas.openxmlformats.org/..."
 xmlns:d="http://schemas.microsoft.com/..."
 xmlns:vm="clr-namespace:WPF.Sample.ViewModels"
 ...

The XML namespace defined here is the equivalent of aliasing a .NET namespace
in C#.

using vm = WPF.Sample.ViewModels;

Once you have a .NET namespace aliased, you can now create any instance of a
class in that name using code like the following:

vm.UserListViewModel viewModel = new vm.UserListViewModel();

This type of aliasing is not done too often in .NET because you generally just
provide a using statement and you can create an instance of your class. However, if
you have two classes with the same name in different namespaces, you would have
to fully qualify one or the other to use them in the same block of code. Instead of
typing out the complete namespace for one of them, using an alias can save some
keystrokes.

Use MVVM to Load Users

Basics of MVVM in WPF 15
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Figure 1: Create an XML namespace to reference view models within a namespace in your
project.

Once you have defined this XML namespace, create an instance of the
UserListViewModel class. Add a <UserControl.Resources> element just before the
<Grid> element. Add an element that begins with the aliased namespace "vm",
followed by a colon, then the class name you wish to create an instance of. As soon
as you type the colon, Visual Studio will provide you with an IntelliSense list of
classes within that namespace (see Figure 2).

<UserControl.Resources>
 <vm:UserListViewModel x:Key="viewModel" />
</UserControl.Resources>

To bind to this XAML instantiated class, you must provide a key name so you can
reference it. In this case, you gave the key name of "viewModel".

Basics of MVVM in WPF

16 Basics of MVVM in WPF
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 2: Create an instance of a view model in XAML using the alias of the namespace and
assigning a key name.

Fix Up User Control
As you are now going to be using all of the code you created in the User view model
class, you may now remove code from your UserListControl control. Open the
UserListControl.xaml file and remove the following attribute from the
<UserControl> element.

Loaded="UserControl_Loaded"

Remove the Name="lstData" from the ListView control.
Open the UserListControl.xaml.cs file and remove the UserControl_Loaded()
event and the LoadUsers() method you created earlier in this blog post.

Bind View Model to List View
You can take advantage of the parent-child hierarchy of XAML for data-binding.
Normally, you create a single view model to bind to a single user control (or
window) and bind controls to properties in the view model. Open the
UserListControl.xaml file and locate the <Grid> element. Modify the <Grid>
element to bind to the view model. Now you see why the key name "viewModel" you

Use MVVM to Load Users

Basics of MVVM in WPF 17
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

created earlier is important. It provides us with a way to bind the DataContext
property of the <Grid> element to the user view model.

<Grid DataContext="{StaticResource viewModel}">

All controls contained within the <Grid> may now bind to any property within the
view model class. Modify the ListView control to bind to the Users property (see
Figure 3) you created in the UserListViewModel class.

<ListView ItemsSource="{Binding Path=Users}">

In Figure 3, you see that the DataContext of the <Grid> is bound to the static
resource you created named "viewModel". This static resource is an instance of the
UserListViewModel class created by XAML when the user control is instantiated.
Finally, the ListView control's ItemsSource property is bound to the Users property
within the UserListViewModel class. Since the ListView control is a child of the
<Grid> element, it has complete access to any of the properties of the class it is
bound to.

Basics of MVVM in WPF

18 Basics of MVVM in WPF
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 3: Bind to a property in the view model to provide data to your UI controls.

Summary
Hopefully, this post helped you see how easy it is to move code from the code
behind your user interface and put it into a class. That is the whole key to MVVM;
simply moving code into a class. Do not worry about being 100% “code behind
free.” That is an almost impossible goal and most often requires you to write more
code. If your event procedures in your UI are simply doing UI code or making a
single call to a method in your View Model, then you have accomplished the goals
of MVVM; namely reusability, maintainability, and testability. You also get one more
benefit: having event procedures in your UI makes it easier to follow the flow of the
application.

Summary

Basics of MVVM in WPF 19
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

NOTE: You can download the sample code for this article by visiting my website at
http://www.pdsa.com/downloads. Select “Fairway/PDSA Blog,” then select “Basics
of MVVM in WPF” from the dropdown list.

http://www.pdsa.com/downloads

	Basics of MVVM in WPF
	Create WPF Application
	Create CommonBase Class
	Create ViewModelBase Class

	Create Local Database
	Add User Data

	Add Entity Framework Classes
	Create Folders
	Create a User Entity Class
	Create a DbContext Class
	Add a Connection String
	Set DataDirectory

	Add a User List User Control
	Add Code to Load Users

	Modify the Main Window
	Try it Out

	The Problem
	Use MVVM to Load Users
	Bind UserListViewModel Class to XAML
	Fix Up User Control
	Bind View Model to List View

	Summary

