
Using Claims to Secure Angular -
Part 1

I previously published a couple of articles on how to create a security system in
Angular. In those articles, a set Angular classes for users'
authentication/authorization were created. You used these classes to login a user
and create a set of properties in a class to turn menus and buttons on and off. For
each menu or button you want to turn on or off, you have a corresponding property
in a AppUserAuth class. This works for smaller applications, but for larger
applications, you would be best to use a claims-based approach.
If you have used the Microsoft Identity system, you know it creates a set of
"AspNet" tables. One of these tables is AspNetUserClaims into which you may
assign a claim name and the value for the claim. You can think of claims like
permissions. A claim may be something like 'I can add a Product', 'I can save a
Product'. You can assign one or more claims to a user, or to a role.

Preparing for this Article
To demonstrate how to apply security to an Angular application, I created a sample
application with a few pages to display products, display a single product, and
display a list of product categories. You can download this sample from
http://pdsa.com/downloads. Select " PDSA/Fairway Blog" from the Category drop-
down, then choose "Using Claims to Secure Angular - Part 1". Within the zip file you
download, there are two folders. One has a suffix of "-Start"; this is the sample
without security. The other has a suffix of "-End" and is the final sample once you
have completed all the steps in this article.
This article assumes you have the following tools installed.

• Visual Studio Code
• Node
• Node Package Manager (npm)
• Angular CLI

Using Claims to Secure Angular

2 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

A Look at the Sample Application
In the sample you downloaded, there are two menus, Products and Categories
(Figure 1), that you may wish to turn off based on claims assigned to a user. On the
product and category list pages (Figure 1), you may want to turn off the Add button
based on claims.

Figure 1: Product list page

On the product detail page (Figure 2), the Save button may be something you wish
to turn off. Perhaps someone can view product detail, but not modify the data.

A Look at the Sample Application

Using Claims to Secure Angular 3
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Figure 2: Turn off the Save button based on claims

Finally, on the Categories page (Figure 3), you may wish to make the Add New
Category button invisible if someone does not have the appropriate claims.

Using Claims to Secure Angular

4 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 3: Turn off the Add New Category button based on permissions

Create User Security Classes
To secure an application, you need a couple of classes to hold user information.
First, you need a user class to hold the user name and password that can be
entered on a login page and verified against some data source. In the first part of
this article, a mock set of logins is used for verification. Secondly, a user
authentication/authorization class is used with properties for each item in your
application you wish to secure.
Next, you need a security service class to authenticate a user and set properties in
the user authentication/authorization object. The property values determine the
permissions for the logged in user. You use the properties to turn on and off
different menus, buttons or other UI elements on your pages.

User Class
Create the user class to hold the user name and password the user entered intothe
login page. Right mouse-click on the \src\app folder and add a new folder named
security. Right mouse-click on the new security folder and add a file named app-
user.ts. Add two properties into this AppUser class as shown in the following code.

Create User Security Classes

Using Claims to Secure Angular 5
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

export class AppUser {
 userName: string = "";
 password: string = "";
}

AppUserClaim Class
To represent claims, create a class named AppUserClaim. This class mimics the
Microsoft Identity table "AspNetUserClaims". Right mouse-click on the security
folder and add a new file named app-user-claim.ts. Add the following code in this
file.

export class AppUserClaim {
 claimId: number = 0;
 userId: number = 0;
 claimType: string = "";
 claimValue: string = "";
}

User Authentication/Authorization Class
It is now time to create a class with an array of claims that will be used to turn
menus and button off and on. Right mouse-click on the security folder and add a
new file named app-user-auth.ts. This class contains the userId and userName
properties to hold the user id and name of the authenticated user, a bearerToken to
be used when interacting with Web API calls, and a boolean property named
isAuthenticated, which is only set to true when a user has been authenticated. The
final property, claims, holds an array of claims. These claims are going to be hard-
coded in this application, but in a future article, you will retrieve these via a Web API
call.

import { AppUserClaim } from "./app-user-claim";

export class AppUserAuth {
 userId: number = 0;
 userName: string = "";
 bearerToken: string = "";
 isAuthenticated: boolean = false;
 claims: AppUserClaim[] = [];
}

Login Mocks
In this article, you are going to keep all authentication and authorization local within
the Angular application. Right mouse-click on the security folder and add a new file
named login-mocks.ts. Create a constant named LOGIN_MOCKS that is an array

Using Claims to Secure Angular

6 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

of AppUserAuth objects. Create a couple of literal objects to simulate two different
user objects you might retrieve from a database on a backend server.

Create User Security Classes

Using Claims to Secure Angular 7
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

import { AppUserAuth } from "./app-user-auth";
import { AppUserClaim } from "./app-user-claim";

export const LOGIN_MOCKS: AppUserAuth[] = [
 {
 userId: 1,
 userName: "PSheriff",
 bearerToken: "abi393kdkd9393ikd",
 isAuthenticated: true,
 claims: [
 {
 userId: 1,
 claimId: 1,
 claimType: "isAuthenticated",
 claimValue: "true"
 },
 {
 userId: 1,
 claimId: 2,
 claimType: "canAccessProducts",
 claimValue: "true"
 },
 {
 userId: 1,
 claimId: 3,
 claimType: "canAddProduct",
 claimValue: "true"
 },
 {
 userId: 1,
 claimId: 4,
 claimType: "canSaveProduct",
 claimValue: "true"
 },
 {
 userId: 1,
 claimId: 5,
 claimType: "canAccessCategories",
 claimValue: "true"
 },
 {
 userId: 1,
 claimId: 6,
 claimType: "canAddCategory",
 claimValue: "false"
 }
]
 },
 {
 userId: 2,
 userName: "BJones",
 bearerToken: "sd9f923k3kdmcjkhd",
 isAuthenticated: true,
 claims: [
 {
 userId: 2,

Using Claims to Secure Angular

8 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

 claimId: 1,
 claimType: "isAuthenticated",
 claimValue: "true"
 },
 {
 userId: 2,
 claimId: 2,
 claimType: "canAccessProducts",
 claimValue: "false"
 },
 {
 userId: 2,
 claimId: 3,
 claimType: "canAddProduct",
 claimValue: "false"
 },
 {
 userId: 2,
 claimId: 4,
 claimType: "canSaveProduct",
 claimValue: "false"
 },
 {
 userId: 2,
 claimId: 5,
 claimType: "canAccessCategories",
 claimValue: "true"
 },
 {
 userId: 2,
 claimId: 6,
 claimType: "canAddCategory",
 claimValue: "true"
 }
]
 }
];

Security Service
Angular is all about services, so create a security service class to authenticate a
user and return a user's authorization object with the appropriate properties. Open a
VS Code terminal window and type in the following command to generate a service
class named SecurityService. Add the -m option to register this service in the
app.module file.

Security Service

Using Claims to Secure Angular 9
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

ng g s security/security --flat -m app.module

Open the generated security.service.ts file and add the following import
statements.

import { Observable } from 'rxjs/Observable';
import { of } from 'rxjs/observable/of';
import { AppUserAuth } from './app-user-auth';
import { AppUser } from './app-user';
import { LOGIN_MOCKS } from './login-mocks';
import { AppUserClaim } from './app-user-claim';

Add a property named securityObject to the SecurityService class to hold the user
authorization object. Initialize this object to a new instance of the AppUserAuth
class so it creates the object in memory.

securityObject: AppUserAuth = new AppUserAuth();

Reset Security Object Method
Once you have created this security object, you do not ever want to reset it to a new
object; instead, just change the properties of this object when a new user
authenticates. Add a method to reset this security object to a default value.

resetSecurityObject(): void {
 this.securityObject.userName = "";
 this.securityObject.bearerToken = "";
 this.securityObject.isAuthenticated = false;
 this.securityObject.claims = [];

 localStorage.removeItem("bearerToken");
}

Login Method
Soon, you are going to create a login page. That login component creates an
instance of the AppUser class and binds the properties in that class to input fields
on the page. Once the user has typed in their user name and password, this
instance of the AppUser class is going to be passed to a login() method in the
SecurityService class to determine if the user exists. If the user exists, the
appropriate properties are filled into a AppUserAuth object and returned from the
login() method.

Using Claims to Secure Angular

10 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

login(entity: AppUser): Observable<AppUserAuth> {
 // Initialize security object
 this.resetSecurityObject();

 // Use object assign to update the current object
 // NOTE: Don't create a new AppUserAuth object
 // because that destroys all references to object
 Object.assign(this.securityObject,
 LOGIN_MOCKS.find(user => user.userName.toLowerCase() ===
 entity.userName.toLowerCase()));
 if (this.securityObject.userName !== "") {
 // Store into local storage
 localStorage.setItem("bearerToken",
 this.securityObject.bearerToken);
 }

 return of<AppUserAuth>(this.securityObject);
}

The first thing to do is to reset the security object, so the resetSecurityObject() is
called. Next, you use the Object.assign() method to replace all the properties in the
securityObject property with the properties from the AppUserAuth object returned
from the find() method on the LOGIN_MOCKS array. If the user is found, the bearer
token is stored into local storage. This is done so that when you need to pass this
value to the Web API, it is available and ready to use. This article is not going to
cover that, but a future article will.

Logout Method
If you have a login method, you should always have a logout() method. The logout()
method resets the properties in the securityObject property to empty fields, or false
values. Resetting the properties (as opposed to creating a new instance of the
class), keeps any bound properties on the securityObject from being thrown away.
For instance, if you are turning off a menu such as the Products menu based on the
value in the isAuthenticated property, if you create a new instance of the security
Object, that bound property is released, and your menu visibility no longer works.

logout(): void {
 this.resetSecurityObject();
}

Login Page
Now that you have a security service to perform a login, you need to retrieve a user
name and password from the user. Create a Login page by opening a terminal
window and type in the following command to generate a login page.

Login Page

Using Claims to Secure Angular 11
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

ng g c security/login --flat -m app.module

Open the login.component.html file and delete the HTML that was generated.
Create three distinct rows on the new login page.

1. Invalid User Name/Password message.
2. Row to display the instance of the securityObject property.
3. Panel for entering user name and password.

Use Bootstrap styles to create each of these rows on this login page. The first div
contains a *ngIf directive to only display the message if the securityObject exists,
and the isAuthenticated property is false. The second div element contains a
binding to the securityObject property. This object is sent to the json pipe to display
the object as a string within a label element. The last row is a Bootstrap panel into
which you place the appropriate user name and password input fields.

Using Claims to Secure Angular

12 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

<div class="row">
 <div class="col-xs-12">
 <div class="alert alert-danger"
 *ngIf="securityObject &&
 !securityObject.isAuthenticated">
 <p>Invalid User Name/Password.</p>
 </div>
 </div>
</div>

<!-- TEMPORARY CODE TO VIEW SECURITY OBJECT -->
<div class="row">
 <div class="col-xs-12">
 <label>{{securityObject | json}}</label>
 </div>
</div>

<form>
 <div class="row">
 <div class="col-xs-12 col-sm-6">
 <div class="panel panel-primary">
 <div class="panel-heading">
 <h3 class="panel-title">Log in</h3>
 </div>
 <div class="panel-body">
 <div class="form-group">
 <label for="userName">User Name</label>
 <div class="input-group">
 <input id="userName" name="userName"
 class="form-control" required
 [(ngModel)]="user.userName"
 autofocus="autofocus" />

 <i class="glyphicon glyphicon-envelope"></i>

 </div>
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <div class="input-group">
 <input id="password" name="password"
 class="form-control" required
 [(ngModel)]="user.password"
 type="password" />

 <i class="glyphicon glyphicon-lock"></i>

 </div>
 </div>
 </div>
 <div class="panel-footer">
 <button class="btn btn-primary" (click)="login()">
 Login
 </button>
 </div>
 </div>

Add Login Menu

Using Claims to Secure Angular 13
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

 </div>
 </div>
</form>

Modify Login Component TypeScript
As you can see from the HTML you entered in the login.component.html file, there
are two properties required for binding to the HTML elements; user and
securityObject. Open the login.component.ts file and add the following import
statements; or, if you wish, use VS Code to insert them for you as you add each
class.

import { AppUser } from './app-user';
import { AppUserAuth } from './app-user-auth';
import { SecurityService } from './security.service';

Add two properties to hold the user and the user authorization object.

user: AppUser = new AppUser();
securityObject: AppUserAuth = null;

To set the securityObject property, inject the SecurityService into the constructor of
this class.

constructor(private securityService: SecurityService) { }

The button in the footer area of the Bootstrap panel binds the click event to a
method named login(). Add this login() method as shown below. The login() method
on the SecurityService class is subscribed, and the response returned is assigned
into the securityObject property defined in this login component.

login() {
 this.securityService.login(this.user)
 .subscribe(resp => {
 this.securityObject = resp;
 });
}

Add Login Menu
Now that you have a login page and a valid security object, you need to add a Login
menu. The menu system is created in the app.component.html file, so you need to

Using Claims to Secure Angular

14 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

open that file and add a new menu item to call the login page. Add the following
HTML below the closing tag used to create the other menus. This HTML
creates a right-justified menu that displays the word "Login" when the user is not yet
authenticated. Once authenticated, the menu changes to Logout <User Name>.

<ul class="nav navbar-nav navbar-right">

 <a routerLink="login"
 *ngIf="!securityObject.isAuthenticated">
 Login

 <a href="#" (onclick)="logout()"
 *ngIf="securityObject.isAuthenticated">
 Logout {{securityObject.userName}}

Modify the AppComponent Class
As you saw from the HTML you entered, you need to add a securityObject property
to the component associated with the app. Open the app.component.ts file and
add the securityObject property. Assign this property to a null value so the Invalid
User Name/Password message does not display on the page.

securityObject: AppUserAuth = null;

Add a constructor to the AppComponent class to inject the SecurityService and
assign the securityObject property from the SecurityService class to the property
you just created.

constructor(private securityService: SecurityService) {
 this.securityObject = securityService.securityObject;
}

Add a logout() method to this class that calls the logout() method on the security
service class. This method is bound to the click event on the Logout menu item you
added in the HTML.

logout(): void {
 this.securityService.logout();
}

Check for Claims

Using Claims to Secure Angular 15
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Add Login Route
To get to the login page, you need to add a route. Open the app-routing.module.ts
file and add a new route like the one shown below.

{
 path: 'login',
 component: LoginComponent
},

Try it Out
Save all the changes you have made so far. Start the application using npm start.
Click the Login menu and login with "psheriff" and notice the properties that are set
in the returned security object. Click the Logout button, then login back in as
"bjones" and notice that different properties are set.

Figure 4: You can see all the various claims in the returned object for this logged in user.

Check for Claims
Open the security.service.ts file and add a new method named isClaimValid() to
check if a user has a specified claim. This method accepts two parameters;

Using Claims to Secure Angular

16 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

claimType and claimValue. The claimValue parameter is optional. Into the
claimType parameter you may pass a claim like 'canAccessProduct' and if nothing
is passed for the claimValue parameter, then the array of claims is searched for a
claim that has claimType equals the value passed in, and the claimValue is equal to
"true". If the claimValue is passed, then the claims array is searched for the
claimType and the claimValue equal to what is passed in.
Another way to call this method is to pass the claim type and claim value in the
claimType parameter separated by a colon. For example, you can pass
"canAccessProducts:false" to the claimType parameter, and there is code in here to
check if a colon exists and to separate out the claim type and the claim value before
searching for these values in the claims array.

private isClaimValid(claimType: string, claimValue?: string) {
 let ret: boolean = false;
 let auth: AppUserAuth = null;

 // Retrieve security object
 auth = this.securityObject;
 if (auth) {
 // See if the claim type has a value
 // *hasClaim="'claimType:value'"
 if (claimType.indexOf(":") >= 0) {
 let words: string[] = claimType.split(":");
 claimType = words[0];
 claimValue = words[1];
 }
 else {
 // Either get the claim value, or assume 'true'
 claimValue = claimValue ? claimValue : "true";
 }
 // Attempt to find the claim
 ret = auth.claims.find(c => c.claimType == claimType
 && c.claimValue == claimValue) != null;
 }

 return ret;
}

The isClaimValid is a private method in the security service class, so you need a
public method to call this one. Create a hasClaim() method that looks like the
following.

hasClaim(claimType: any, claimValue?: any) {
 return this.isClaimValid(claimType, claimValue);
}

The above method is very simple, but later, you are going to add code to check for
an array of claims to be passed in, so just create this simple method for now.

Check for Claims

Using Claims to Secure Angular 17
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Has Claim Structural Directive
When you do not have properties to bind to on a class, but instead you have an
array of objects, you can't use data-binding to secure buttons and menus. Instead
you can use a structural directive like the *ngIf directive. You want to create a
directive that can attach to a UI element like the following:

<button class="btn btn-primary" (click)="addProduct()"
 *hasClaim="'canAddProduct'">
 Add New Product
</button>

The directive is passed the value within the quotes as a string, checks the security
object to see if that claim exists in the array for the current user, and if that claim
value is true. If so, then the button is displayed, otherwise it is removed from the
DOM.
Create this hasClaim Angular structural directive by opening a terminal window in
Code and typing in the following command.

ng g d security/hasClaim --flat -m app.module

Open the has-claim.directive.ts file and modify the import statement to add a few
more classes.

import { Directive, Input, TemplateRef, ViewContainerRef }
 from '@angular/core';

Modify the selector property from ptcHasClaim to hasClaim.

@Directive({ selector: '[hasClaim]' })

Modify the constructor to inject the TemplateRef, ViewContainerRef and the
SecurityService.

constructor(
 private templateRef: TemplateRef<any>,
 private viewContainer: ViewContainerRef,
 private securityService: SecurityService) { }

Add the following @Input property to accept data from the right-hand side of the
equal sign of the hasClaim directive as shown earlier.

Using Claims to Secure Angular

18 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

@Input() set hasClaim(claimType: any) {
 if (this.securityService.hasClaim(claimType)) {
 // Add template to DOM
 this.viewContainer.createEmbeddedView(this.templateRef);
 } else {
 // Remove template from DOM
 this.viewContainer.clear();
 }
}

The @Input() decorator tells Angular to pass the value to this property defined in
the directive. The claimType is passed to the hasClaim() method you created earlier
in the security service class. If the claim exists, the UI element to which this
directive is applied is displayed on the screen.

Secure Add New Product Button
Try out your new directive by opening the product-list.component.ts file and
adding this directive to the Add New Product button as shown in the code below.

<button class="btn btn-primary" (click)="addProduct()"
 *hasClaim="'canAddProduct'">
 Add New Product
</button>

Don't forget to add the single quotes inside the double quotes. If you forget them,
Angular is going to try to bind to a property in your component named
canAddProduct which does not exist.

Try it Out
Save all your changes and go back to the browser. Click on the Login menu and
login as "psheriff". Click on the Products menu and you should see the Add New
Product button appear. Logout psheriff and login as "bjones". The Add New Product
button should now be gone. You may specify the value you want the claim to be by
adding a colon, followed by the value after the claim name.

<button class="btn btn-primary" (click)="addProduct()"
 *hasClaim="'canAddProduct:false'">
 Add New Product
</button>

If you now login as "psheriff", the Add New Product button is gone. Login as
"bjones" and it should appear. Remove the ":false" from the claim after you have
tested this out.

Add Multiple Claims

Using Claims to Secure Angular 19
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Add Multiple Claims
Sometimes your security requirements are such that you need to secure a UI
element using multiple claims. For example, you want to display a button for people
that have one claim, and for people that have another claim. To accomplish this,
you need to pass an array of claims to the hasClaim directive as shown below.

*hasClaim="['canAddProduct', 'canAccessCategories']"

You need to modify the hasClaim method in the SecurityService class to check to
see if just a single string value has been passed, or an array. Open the
security.service.ts file and modify the hasClaim method to look like the following.

// This method can be called a couple of different ways
// *hasClaim="'claimType'" // Assumes claimValue is true
// *hasClaim="'claimType:value'" // Compares claimValue to value
// *hasClaim="['claimType1','claimType2:value',
 'claimType3']"
hasClaim(claimType: any, claimValue?: any) {
 let ret: boolean = false;

 // See if an array of values was passed in.
 if (typeof claimType === "string") {
 ret = this.isClaimValid(claimType, claimValue);
 }
 else {
 let claims: string[] = claimType;
 if (claims) {
 for (let index = 0; index < claims.length; index++) {
 ret = this.isClaimValid(claims[index]);
 // If one is successful, then let them in
 if (ret) {
 break;
 }
 }
 }
 }

 return ret;
}

As you now have two different data types that can be passed to the hasClaim()
method, use the typeof operator to check if the claimType parameter is a string. If it
is, call the isClaimValid() method passing in the two parameters. If it is not a string,
assume it is an array. Cast the claimType parameter into a string array named
claims. Verify it is an array, then loop through each element of the array and pass
each element to the isClaimValid() method. If even one claim matches, then return
a true from this method so the UI element is displayed.

Using Claims to Secure Angular

20 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Secure Other Buttons
Open the product-list.component.html file and modify the Add New Product
button to use an array.

*hasClaim="['canAddProduct', 'canAccessCategories']"

Open the product-detail.component.html file and modify the Save button.

<button class="btn btn-primary" (click)="saveData()"
 *hasClaim="'canSaveProduct'">
 Save
</button>

Open the category-list.component.html file and modify the Add New Category
button.

<button class="btn btn-primary" (onclick)="addCategory()"
 *hasClaim="'canAddCategory'">
 Add New Category
</button>

Try it Out
Save all the changes in your application and go back to your browser. Login as
"bjones" and because he has the canAccessCategories claim, he is allowed to view
the Add New Product button. Change the hasClaim attribute in the product-
list.component.html file so it is a single value again.

*hasClaim="'canAddProduct'"

Try it Out
Save all the changes and test the application to make sure that when you are
logged in with the correct user, you see the correct buttons.

Create Observer Pattern
One consideration when using a structural directive that passes in a string value,
instead of binding to a property on the component, is that if the securityObject gets
a new set of claims due to a change in who is logged in, there is no automatic

Create Observer Pattern

Using Claims to Secure Angular 21
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

refresh since there is no binding. This means that you need to come up with some
other mechanism to inform the AppComponent page that claims have changed and
any menus that are secured, need to potentially be re-displayed, or hidden. One
method you can employ is an observer pattern where you inform any observers of
the securityObject property in the security service that something has changed.
Open the security.service.ts file and add the following import statement. This
BehaviorSubject class from RxJS allows you to setup an observable and an
observer. The reason to use a BehaviorSubject as opposed to a normal Observable
is a BehaviorSubject allows you to send a message to any observers.

import { BehaviorSubject } from 'rxjs/BehaviorSubject';

Create a private property named hasChanged and assign it to a generic number of
the type of BehaviorSubject. Assign that object an initial value of zero. It doesn't
matter what the initial value is.

private hasChanged = new BehaviorSubject<number>(0);

Next, create a public observable called securityReset. It is this public property that
any observer can subscribe to receive changes to the value.

securityReset = this.hasChanged.asObservable();

When a new user logs in, you want to inform any observer that the securityObject
property has received a new set of claims, and a new user. To inform them, call the
next() method on the private hasChanged property and pass in any value.

Using Claims to Secure Angular

22 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

login(entity: AppUser): Observable<AppUserAuth> {
 // Initialize security object
 this.resetSecurityObject();

 // Use object assign to update the current object
 // NOTE: Don't create a new AppUserAuth object
 // because that destroys all references to object
 Object.assign(this.securityObject,
 LOGIN_MOCKS.find(user => user.userName.toLowerCase() ===
 entity.userName.toLowerCase()));
 if (this.securityObject.userName !== "") {
 // Store into local storage
 localStorage.setItem("bearerToken",
 this.securityObject.bearerToken);

 // Inform everyone that the security object has changed.
 this.hasChanged.next(0);
 }

 return of<AppUserAuth>(this.securityObject);
}

Modify the resetSecurityObject() method to also inform all observers that the
securityObject property has changed.

resetSecurityObject(): void {
 this.securityObject.userName = "";
 this.securityObject.bearerToken = "";
 this.securityObject.isAuthenticated = false;
 this.securityObject.claims = [];

 // Inform everyone that the security object has changed.
 this.hasChanged.next(0);

 localStorage.removeItem("bearerToken");
}

Secure Menus
Now that you have a method to communicate that the securityObject property in the
security service class have changed, you may now secure the menus in the
app.component.html file. For each menu you wish to secure, you are going to
create a property for each one. When the securityObject changes you query the
security service class to see if the corresponding claim for that property is true or
false. If the value is true, then the menu property is updated and the menu is
displayed, and vice versa. Open app.component.html file and add the *ngIf
directive to the two menu items.

Secure Menus

Using Claims to Secure Angular 23
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

 <a routerLink="/products"
 *ngIf="canAccessProducts">Products

 <a routerLink="/categories"
 *ngIf="canAccessCategories">Categories

Open the app.component.ts file and modify the first import statement to add a
couple of interfaces. Also, import the Subscription class from RxJS. This helps you
setup an observer to the securityObject property in the security service class.

import { Component, OnInit, OnDestroy } from '@angular/core';
import { Subscription } from 'rxjs/Subscription';

Modify the class definition to add the two additional methods you need to add to use
the observer pattern.

export class AppComponent implements OnInit, OnDestroy

Add three new properties; subscription, canAccessProducts, canAccessCategories.
The subscription property is used as the observer to the securityObject in the
security service class. The other two properties are for binding to the menus in the
app.component.html file.

subscription: Subscription;
canAccessProducts: boolean = false;
canAccessCategories: boolean = false;

Add an updateProperties() method to update each of the menu properties by calling
the hasClaim() method in the security service class.

private updateProperties() {
 this.canAccessProducts =
 this.securityService.hasClaim("canAccessProducts", "true");
 this.canAccessCategories =
 this.securityService.hasClaim("canAccessCategories", "true");
}

Add an ngOnInit() method and setup your observer in this method. During the
subscribe you call the updateProperties() method to modify the values in those
menu properties each time the securityObject property changes in the security
service class.

Using Claims to Secure Angular

24 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

ngOnInit() {
 this.subscription = this.securityService.securityReset
 .subscribe(() => this.updateProperties());
}

When you are explicitly creating your own subscription and not using something
created by Angular, you need to unsubscribe from that subscription when you are
done. Add an ngOnDestroy() method to this class and call the unsubscribe()
method when this component is destroyed.

ngOnDestroy() {
 // prevent memory leak when component is destroyed
 this.subscription.unsubscribe();
}

Try it Out
Save all your changes, go to the browser and try logging in and out using the
different user names. Every time you login and logout, the menus should change.

Secure Routes Using a Guard
Even though you can control the visibility of menu items, just because you can't
click on them doesn't mean you can't get to the route. You can type the route
directly into the browser address bar and you can get to the products page even if
you don't have the canAccessProducts claim.
To protect the routes based on claims, you need to build a Route Guard. A Route
Guard is a special class in Angular to determine if a page can be activated, or even
deactivated. Let's learn how to build a CanActivate guard. Open a terminal and
create a new guard named AuthGuard.

ng g g security/auth --flat -m app.module

To protect a route, open the app-routing.module.ts file and add the canActivate
property to those paths you wish to secure. You pass one or many guards to this
property. In this case, add the AuthGuard class to the array of guards. For each
route, specify the name of the claim to check that is associated with this route. Add
a data property and pass in a property named claimType and set the value to the
name of the claim associated with the route. This data property is passed to each
Guard listed in the canActivate property.

Secure Routes Using a Guard

Using Claims to Secure Angular 25
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

{
 path: 'products',
 component: ProductListComponent,
 canActivate: [AuthGuard],
 data: {claimType: 'canAccessProducts'}
},
{
 path: 'productDetail/:id',
 component: ProductDetailComponent,
 canActivate: [AuthGuard],
 data: { claimType: 'canAccessProducts'}
},
{
 path: 'categories',
 component: CategoryListComponent,
 canActivate: [AuthGuard],
 data: { claimType: 'canAccessCategories'}
},

Authorization Guard
Let's write the appropriate code in the AuthGuard to secure the route. Since you are
going to need to access the property passed in via the data property, open the
auth-guard.ts file and add a constructor to inject the SecurityService.

constructor(private securityService: SecurityService) { }

Modify the canActivate() method to retrieve the claimType property in the data
property. Remove the "return true" statement and add the following lines of code in
its place.

canActivate(
 next: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): Observable<boolean> |
 Promise<boolean> | boolean {

 // Get claim type on security object to check
 let claimType: string = next.data["claimType"];

 // Check security claim
 return this.securityService.hasClaim(claimType, "true");
}

Retrieve the claimType to validate using the data property on the
ActivatedRouteSnaphot object passed into this method. A true value returned from
this guard means the user has the right to navigate to this route.

Using Claims to Secure Angular

26 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Try it Out
Save all the changes you have made and go to the browser and type directly into
the browser address bar http://localhost:4200/products. If you are not logged in,
you are not able to get to the products page. Your guard is working; however, it
ends up displaying a blank page. It would be better to redirect to the login page.

Redirect to Login Page
To redirect to the login page, modify the AuthGuard class to perform the redirection
if the user is not authorized for the current route. Open the auth-guard.ts file and
inject the Router service into the constructor.

constructor(private securityService: SecurityService,
 private router: Router) { }

Modify the canActivate() method. Remove the current return statement and replace
it with the following lines of code.

if (this.securityService.securityObject.isAuthenticated
 && this.securityService.hasClaim(claimType)) {
 return true;
}
else {
 this.router.navigate(['login'],
 { queryParams: { returnUrl: state.url } });
 return false;
}

If the user is authenticated and authorized, the Guard returns a true and Angular
goes to the route. Otherwise, use the Router object to navigate to the login page.
Pass the current route the user was attempting to view as a query parameter. This
places the route on the address bar for the login component to retrieve and use to
go to the route requested after a valid login.

Try it Out
Save all your changes, go to the browser, and type directly into the browser address
bar http://localhost:4200/products. The page will reset, and you will be directed to
the login page. You should see a returnUrl parameter in the address bar. You can
login, but you won't be redirected to the products page, you need to add some code
to the login component.

Redirect Back to Requested Page

Using Claims to Secure Angular 27
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Redirect Back to Requested Page
If the user logs in with the appropriate credentials that allows them to get to the
requested page, then you want to direct them to that page after login. The
LoginComponent class should return the returnUrl query parameter and attempt to
navigate to that route after successful login. Open the login.component.ts file and
inject the ActivatedRoute and the Router objects into the constructor.

constructor(private securityService: SecurityService,
 private route: ActivatedRoute,
 private router: Router) { }

Add a property to this class to hold the return url, if any, that is retrieved from the
address bar.

returnUrl: string;

Add a line to the ngOnInit() method to retrieve this returnUrl query parameter. If you
click on the Login menu directly, the queryParamMap.get() method returns a null.

ngOnInit() {
 this.returnUrl =
 this.route.snapshot.queryParamMap.get('returnUrl');
}

Locate the login() method and add code after setting the securityObject to test for a
valid url and to redirect to that route if there is one.

login() {
 localStorage.removeItem("bearerToken");

 this.securityService.login(this.user)
 .subscribe(resp => {
 this.securityObject = resp;
 if (this.returnUrl) {
 this.router.navigateByUrl(this.returnUrl);
 }
 });
}

Try it Out
Save all your changes, go to the browser, and type directly into the browser address
bar http://localhost:4200/products and you will be directed to login page. Login as
"psheriff" and you are redirected to the products list page.

Using Claims to Secure Angular

28 Using Claims to Secure Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Summary
In this article you learned to setup an array of claims and perform authorization
using those claims, as well as how to turn menus and buttons on and off can be
done by using claim types. You also learned to secure routes using a Route Guard
that looks up claim information in the array of claims for the currently logged-in user.

Sample Code
You can download the complete sample code at my website.
http://www.pdsa.com/downloads. Choose "PDSA/Fairway Blog", then " Using
Claims to Secure Angular - Part 1" from the drop-down.

http://www.pdsa.com/downloads

	Using Claims to Secure Angular - Part 1
	Preparing for this Article
	A Look at the Sample Application
	Create User Security Classes
	User Class
	AppUserClaim Class
	User Authentication/Authorization Class
	Login Mocks

	Security Service
	Reset Security Object Method
	Login Method
	Logout Method

	Login Page
	Modify Login Component TypeScript

	Add Login Menu
	Modify the AppComponent Class
	Add Login Route
	Try it Out

	Check for Claims
	Has Claim Structural Directive
	Secure Add New Product Button
	Try it Out

	Add Multiple Claims
	Secure Other Buttons
	Try it Out
	Try it Out

	Create Observer Pattern
	Secure Menus
	Try it Out

	Secure Routes Using a Guard
	Authorization Guard
	Try it Out

	Redirect to Login Page
	Try it Out

	Redirect Back to Requested Page
	Try it Out

	Summary
	Sample Code

