
Security in Angular - Part 2

In Part 1 of this article series, you created a set Angular classes for users and user
authentication/authorization. You used these classes to login a user, create a set of
properties in a class to turn menus and buttons on and off. In this article you learn to
authenticate users against a Web API method. That method returns an
authorization object with the same properties as the classes you created in Angular.
You are also going to learn to secure your Web API methods using JSON Web
Tokens (JWT). You use the [Authorize] attribute to secure your methods, and you
learn to add security policies too.

The Starting Application
To follow along with this article, download the accompanying ZIP. After extracting
the sample from the ZIP file, there is a VS Code workspace file you can use to load
the two projects in this application. If you double-click on this workspace file, the
solution is loaded that looks like Figure 1. There are two projects; PTC is the
Angular application. PtcApi is the ASP.NET Core Web API project.
In the last article, you did everything client-side. For the starting application in this
article, I pre-built an ASP.NET Core Web API project and hooked up the Product
and Category pages to the appropriate controllers in this Web API project. In this
article you build the security classes necessary to return user authentication and
authorization information to your Angular application.

Security in Angular

2 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: The starting application has two projects; the Angular project (PTC) and the .NET
Core Web API project (PtcApi).

Create Application Security Classes

Security in Angular 3
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Create Application Security Classes
In Part 1 of this article series, you created Angular classes to represent a user and a
user security object with properties you can bind to. You need to create these same
classes as C# classes in the PtcApi project. You are going to build the C# classes
with the same names and almost the same properties as those in TypeScript.

AppUser Class
The AppUser class is a simplified version of a user class with just UserName and
Password properties. In this article, I am keeping the classes simple and will not be
using a database, I am just going to use mock data, just like what I did in Part 1 of
this article series. This helps you focus on how things work, and not have to worry
about a lot of configuration. Don't worry, you are going to use real SQL tables in the
article. Right mouse-click on the Model folder and add a new file named
AppUser.cs. Add the following code into this file.

namespace PtcApi.Model
{
 public class AppUser
 {
 public int UserId { get; set; }
 public string UserName { get; set; }
 public string Password { get; set; }
 }
}

Create AppUserAuth Class
The AppUserAuth class has properties to represent a user security profile. Again, to
keep things simple, I have listed individual properties that can be directly bound to
UI elements in Angular. In a future article, I will explore how to use Roles and
Claims/Permissions with a security system like the one presented here. Right
mouse-click on the Model folder and add a new file named AppUserAuth.cs. Add
the following code into this file.

Security in Angular

4 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

namespace PtcApi.Model
{
 public class AppUserAuth
 {
 public AppUserAuth() : base()
 {
 UserName = string.Empty;
 BearerToken = string.Empty;
 IsAuthenticated = false;
 CanAccessProducts = false;
 CanAddProduct = false;
 CanSaveProduct = false;
 CanAccessCategories = false;
 CanAddCategory = false;
 }

 public string UserName { get; set; }
 public string BearerToken { get; set; }
 public bool IsAuthenticated { get; set; }
 public bool CanAccessProducts { get; set; }
 public bool CanAddProduct { get; set; }
 public bool CanSaveProduct { get; set; }
 public bool CanAccessCategories { get; set; }
 public bool CanAddCategory { get; set; }
 }
}

Build Security Manager Class
Instead of building the mock data and creating the user security object in a Web API
controller class, place that code in another class. Right mouse-click on the PtcApi
project and create a new folder named Security. Right mouse-click on the new
Security folder and add a new file named SecurityManager.cs. Add the following
code into this file.

using System;
using System.Collections.Generic;
using System.Linq;
using PtcApi.Model;

namespace PtcApi.Security
{
 public class SecurityManager
 {
 private AppUser _user = null;
 private AppUserAuth _auth = null;
 }
}

Build Security Manager Class

Security in Angular 5
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Add CreateMockUsers() Method
Add a method to the SecurityManager class to create a set of mock users. It is
against this collection of users, you are going to check the credentials of the user
submitted from the Angular application.

private List<AppUser> CreateMockUsers()
{
 List<AppUser> list = new List<AppUser>();

 list.Add(new AppUser()
 {
 UserId = 1,
 UserName = "PSheriff",
 Password = "P@ssw0rd"
 });
 list.Add(new AppUser()
 {
 UserId = 2,
 UserName = "Bjones",
 Password = "P@ssw0rd"
 });

 return list;
}

Write CreateMockSecurityObjects() Method
If you read Part 1 of this article series, the following method should look like the
LOGIN_MOCKS constant created in the PTC Angular application. Add a method
named CreateMockSecurityObjects() to build a list of AppUserAuth objects with
different properties filled in for each user.

Security in Angular

6 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

private List<AppUserAuth> CreateMockSecurityObjects()
{
 List<AppUserAuth> list = new List<AppUserAuth>();

 list.Add(new AppUserAuth()
 {
 UserName = "PSheriff",
 BearerToken = "abi393kdkd9393ikd",
 IsAuthenticated = true,
 CanAccessProducts = true,
 CanAddProduct = true,
 CanSaveProduct = true,
 CanAccessCategories = true,
 CanAddCategory = false
 });
 list.Add(new AppUserAuth()
 {
 UserName = "Bjones",
 BearerToken = "sd9f923k3kdmcjkhd",
 IsAuthenticated = true,
 CanAccessProducts = true,
 CanAddProduct = false,
 CanSaveProduct = false,
 CanAccessCategories = true,
 CanAddCategory = true
 });

 return list;
}

In the above code I have hard-coded a value into the BearerToken property. Later
in this article you generate a real bearer token using JWT.

Write BuildUserAuthObject Method
When the user logs in to the Angular application, the user name and password are
sent to a controller in a AppUser object. That user object is going to be passed into
a ValidateUser() method you are going to write in just a minute. Write a method
named BuildUserAuthObject() that is going to be called from the ValidateUser()
method to build the user's security object.
This method checks to ensure that the private field variable named _user is not null.
If it isn't, it creates the list of mock security objects and looks through the list
searching for where the user name passed in matches one of the objects in the list.
If it finds that object, it assigns it to the _auth field. If the user security object is not
found, a new instance of the AppUserAuth class is created and assigned to the
_auth field. It is the value in this _auth field that is returned to the Angular
application.

Add Security Controller

Security in Angular 7
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

protected void BuildUserAuthObject()
{
 if (_user != null)
 {
 _auth = CreateMockSecurityObjects()
 .Where(u => u.UserName ==
 _user.UserName).FirstOrDefault();
 }

 if (_auth == null)
 {
 _auth = new AppUserAuth();
 }
}

Add ValidateUser Method
The ValidateUser() method is the only method exposed from the SecurityManager
class. The security controller you are going to create to accept the AppUser object
from the Angular application calls this method and passes in that user object to
validate the user.
The ValidateUser() object assigns the user passed in, into the _user field. The user
is validated against the list of mock users to ensure that the user name and
password match one of the users in the list. The BuildUserAuthObject() method is
called to build a AppUserAuth object and passed back to the controller.

public AppUserAuth ValidateUser(AppUser user)
{
 // Assign current user
 _user = user;

 // Attempt to validate user
 _user = CreateMockUsers().Where(
 u => u.UserName.ToLower() == _user.UserName.ToLower()
 && u.Password == _user.Password).FirstOrDefault();

 // Build User Security Object
 BuildUserAuthObject();

 return _auth;
}

Add Security Controller
It is now time to build the security controller the Angular application calls. Angular
passes the user credentials in an AppUser object. The security controller returns an
AppUserAuth object with the appropriate properties set. Right mouse-click on the

Security in Angular

8 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Controllers folder and add a new file named SecurityController.cs. Add the
following code into this file.

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using PtcApi.Security;
using PtcApi.Model;

namespace PtcApi.Controllers
{
 [Route("api/[controller]")]
 public class SecurityController : Controller
 {

 }
}

Within this new controller class, add a Login() method that accepts an AppUser
object. Create an instance of the SecurityManager and pass that AppUser object to
the ValidateUser() method. If the user comes back authenticated, the
IsAuthenticated property is a true value. Set the ret variable to an IActionResult
generated by the StatusCode() method. A status code of 200 is passed back to the
Angular application with the payload of the user security object. If the user is not
authenticated, pass back a status code of 404.

[HttpPost("login")]
public IActionResult Login([FromBody]AppUser user)
{
 IActionResult ret = null;
 AppUserAuth auth = new AppUserAuth();
 SecurityManager mgr = new SecurityManager();

 auth = (AppUserAuth)mgr.ValidateUser(user);
 if (auth.IsAuthenticated)
 {
 ret = StatusCode(StatusCodes.Status200OK, auth);
 }
 else
 {
 ret = StatusCode(StatusCodes.Status404NotFound,
 "Invalid User Name/Password.");
 }

 return ret;
}

Call Web API

Security in Angular 9
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Call Web API
To call the SecurityController's Login() method, use the HttpClient service in
Angular. Go back to the PTC project and open the security.service.ts file located
in the \src\app\security folder and add the following import statements.

import {HttpClient, HttpHeaders} from '@angular/common/http';
import { tap } from 'rxjs/operators';

Add two constants just under the import statements. The first constant is the
location of the Web API controller. The second constant holds header options
required by the HttpClient when POSTing data to a Web API call.

const API_URL = "http://localhost:5000/api/security/";

const httpOptions = {
 headers: new HttpHeaders({
 'Content-Type': 'application/json'
 })
};

To use the HttpClient service in your security service class, modify the constructor
to tell Angular to inject the HttpClient. Dependency injection is used extensively
throughout Angular to provide services such as HttpClient to different components.
The HttpClientModule has already been imported in the AppModule class. This
module must be imported to allow components to use the HttpClient service.

constructor(private http: HttpClient) { }

Remove the hard-coded logic in the login() method, and make a Web API call.
Modify the login() method to call the SecurityController login method. If valid data is
returned from this call, the pipe() method is used to tap into the pipeline. You can
retrieve the data returned and assign that data to the securityObject property.
It is very important you don't use the equal sign to assign to the securityObject
property. If you do, bound references to the securityObject are wiped out and your
menus and other UI elements bound to properties on the securityObject no longer
work. Instead, use the Object.assign() method to copy the data from one object to
another.
This method also takes the bearer token and stores it into local storage. The reason
for this will become apparent later in this article when you learn about building
HTTP Interceptor class.

Security in Angular

10 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

login(entity: AppUser): Observable<AppUserAuth> {
 // Initialize security object
 this.resetSecurityObject();

 return this.http.post<AppUserAuth>(API_URL + "login",
 entity, httpOptions).pipe(
 tap(resp => {
 // Use object assign to update the current object
 // NOTE: Don't create a new AppUserAuth object
 // because that destroys all references to object
 Object.assign(this.securityObject, resp);
 // Store into local storage
 localStorage.setItem("bearerToken",
 this.securityObject.bearerToken);
 }));
}

Modify Login Component
Since it is possible the Web API may return a 404: Not Found error, be sure to
handle this status code so you can display the Invalid User Name/Password error
message. Open the login.component.ts file and add the error block in the
subscribe() method. The login HTML contains a Bootstrap alert which has the words
"Invalid User Name/Password." in a <p> tag. This alert only shows up if the
securityObject is not null and the isAuthenticated property is set to false.

login() {
 this.securityService.login(this.user)
 .subscribe(resp => {
 this.securityObject = resp;
 if (this.returnUrl) {
 this.router.navigateByUrl(this.returnUrl);
 }
 },
 () => {
 // Initialize security object to display error message
 this.securityObject = new AppUserAuth();
 });
}

Try it Out
Save all your changes and start the debugging of the Web API project. Start the
Angular application by typing in npm start in a terminal window. Go to the browser
and attempt to login using either "psheriff" or "bjones" with a password of
"P@ssw0rd". If you have done everything correctly, the Web API is now being
called for authenticating the user name and password. Try logging in with a bogus
login id and password to make sure the error handling is working.

Authorizing Access to Web API Call

Security in Angular 11
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Authorizing Access to Web API Call
Now that you have created these Web API calls, you need to ensure that only those
people authorized to call your APIs can do so. In .NET you can use the [Authorize]
attribute to secure a controller class, or individual methods within the controller
class. However, there must be some authentication / authorization component in the
.NET runtime to provide data to this attribute. The [Authorize] attribute must be able
to read that data to decide if the user has permissions to call the method.
There are many different authentication/authorization components you can use
such as Microsoft Identity, OAuth, and JSON Web Tokens (JWT) just to mention a
few. In this article, you are going to use JWT.

Secure Product Get() Method
To show you what happens when you apply the Authorize attribute to a method,
open the ProductController.cs file and add the [Authorize] attribute to the Get()
method.

[HttpGet]
[Authorize]
public IActionResult Get()
{
 // REST OF THE CODE
}

Try it Out
Save your change and run the PtcApi project. Login as "psheriff" and click on the
Products menu. No product data is displayed because you attempted to call a
method that was secured with the [Authorize] attribute. Press the F12 key to bring
up the developer tools and you should see something that looks like Figure 2.
Notice that you are getting status code of 500 instead of a 401 (Unauthorized) or
403 (Forbidden). The reason is you have not registered an authentication service
with .NET core. Microsoft Identity, OAuth, or JWT must be registered with .NET
core to return a 401 instead of a 500.

Security in Angular

12 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 2: You receive a status code of 500 when you use the Authorize attribute without
registering an authentication service.

Add JWT Configuration
To use the JSON Web Token system, there are a few steps you must perform.

• Add JWT package.
• Add JWT bearer token checking package.
• Store default JWT settings in configuration file.
• Register JWT as the authentication service.
• Add bearer token options to validate incoming token.
• Build JWT token and add to user security object.

Add JWT Package
The first you must do in your Web API project is to add some packages to use the
JSON Web Token system. Open a terminal window in your PtcApi project and
enter the following command.

Add JWT Configuration

Security in Angular 13
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

dotnet add package System.IdentityModel.Tokens.Jwt

Add Bearer Token Check
In addition to the Jwt package, add a package to ensure the bearer token is passed
in from the client. Add this package to your PtcApi project using the following
command in your terminal window.

dotnet add package Microsoft.AspNetCore.Authentication.JwtBearer

Add JWT Settings to Configuration
There are a few things that are needed for a JwtToken to be issued.

• A secret key used for hashing data sent to the client.
• The name of the issuer of the token.
• The intended audience of the token.
• How many minutes to allow the token to be valid.

Store JWT Information in appsettings.json
You are going to need all the above items in two places in your code; once when
you configure JWT in the .NET Core Startup class, and once when you generate a
new token specifically for a user. You do not want to hard-code data into two
places, so use the .NET Core configuration system to retrieve this data from the
appsettings.json file located in the root folder of the PtcApi project.
Open the appsettings.json file and add a new entry named JwtSettings. Add the
following properties and values into this JwtSettings object.

Security in Angular

14 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

{
 "Logging": {
 "IncludeScopes": false,
 "Debug": {
 "LogLevel": {
 "Default": "Warning"
 }
 },
 "Console": {
 "LogLevel": {
 "Default": "Warning"
 }
 }
 },
 "JwtSettings": {
 "key": "This*Is&A!Long)Key(For%Creating@A$SymmetricKey",
 "issuer": "http://localhost:5000",
 "audience": "PTCUsers",
 "minutesToExpiration": "10"
 }
}

Add JwtSettings Class
You can just use the configuration system in .NET core to retrieve this data, but I
prefer using a class. Right mouse-click on the Security folder and add a new file
named JwtSettings.cs and add the following code.

public class JwtSettings {
 public string Key { get; set; }
 public string Issuer { get; set; }
 public string Audience { get; set; }
 public int MinutesToExpiration { get; set; }
}

Read the Settings
Open the Startup.cs file and add a new method to read these settings using the
.NET Core configuration object and create a new instance of the JwtSettings class.

Add JWT Configuration

Security in Angular 15
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

public JwtSettings GetJwtSettings() {
 JwtSettings settings = new JwtSettings();

 settings.Key = Configuration["JwtSettings:key"];
 settings.Audience = Configuration["JwtSettings:audience"];
 settings.Issuer = Configuration["JwtSettings:issuer"];
 settings.MinutesToExpiration =
 Convert.ToInt32(
 Configuration["JwtSettings:minutesToExpiration"]);

 return settings;
}

Create a Singleton for the JWT Settings
Modify the ConfigureServices() method to create an instance of the JwtSettings
class and call the GetJwtSettings() method. When this object is created, add it as a
Singleton to the .NET core services so you can inject this into any controller.

public void ConfigureServices(IServiceCollection services)
{
 // Get JWT Token Settings from JwtSettings.json file
 JwtSettings settings;
 settings = GetJwtSettings();
 services.AddSingleton<JwtSettings>(settings);

 // REST OF THE CODE HERE
}

Register JWT as the Authentication Provider
Just below this code is where you are going to register JWT as an Authentication
provider. Configure the settings of JWT with the security key, issuer, audience and
minutes to expiration. This is the object that ensures the bearer token passed in
from Angular is valid.

Security in Angular

16 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

public void ConfigureServices(IServiceCollection services)
{
 // Get JWT Token Settings from JwtSettings.json file
 JwtSettings settings;
 settings = GetJwtSettings();
 services.AddSingleton<JwtSettings>(settings);

 // Register Jwt as the Authentication service
 services.AddAuthentication(options =>
 {
 options.DefaultAuthenticateScheme = "JwtBearer";
 options.DefaultChallengeScheme = "JwtBearer";
 })
 .AddJwtBearer("JwtBearer", jwtBearerOptions =>
 {
 jwtBearerOptions.TokenValidationParameters =
 new TokenValidationParameters
 {
 ValidateIssuerSigningKey = true,
 IssuerSigningKey = new SymmetricSecurityKey(
 Encoding.UTF8.GetBytes(settings.Key)),
 ValidateIssuer = true,
 ValidIssuer = settings.Issuer,

 ValidateAudience = true,
 ValidAudience = settings.Audience,

 ValidateLifetime = true,
 ClockSkew = TimeSpan.FromMinutes(
 settings.MinutesToExpiration)
 };
 });

 // REST OF THE CODE HERE
}

The last thing to do in the Startup class is modify the Configure() method and tell it
to use authentication.

Add JWT Configuration

Security in Angular 17
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

public void Configure(IApplicationBuilder app,
 IHostingEnvironment env)
{
 // REST OF THE CODE HERE

 app.UseAuthentication();

 app.UseMvc();
}

Inject Settings into SecurityController
You want .NET Core to inject the JwtSettings class into the SecurityController so
you can have access to the JWT Token settings. Open the SecurityController.cs
file and add a constructor that accepts an instance of the JwtSettings class. Store
this settings object into a field named _settings. Pass this _settings field to the
SecurityManager constructor.

public class SecurityController : Controller
{
 private JwtSettings _settings;
 public SecurityController(JwtSettings settings)
 {
 _settings = settings;
 }

 [HttpPost("login")]
 public IActionResult Login([FromBody]AppUser user)
 {
 IActionResult ret = null;
 AppUserAuth auth = new AppUserAuth();
 SecurityManager mgr = new SecurityManager(_settings);

 auth = (AppUserAuth)mgr.ValidateUser(user);

 // REST OF THE CODE HERE
}

Accept Settings in SecurityManager
In the code above, you passed in an instance of the JwtSettings class to the
SecurityManager class. Open the SecurityManager.cs file and add code to accept
this JwtSettings instance. The code is going to look very similar to the constructor
and the private field you added in the SecurityController.

Security in Angular

18 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

private JwtSettings _settings = new JwtSettings();
public SecurityManager(JwtSettings settings)
{
 _settings = settings;
}

Build a JSON Web Token
You are finally ready to build a bearer token you can add to the BearerToken
property in the user security object. Add a new method to the SecurityManager
class named BuildJwtToken(). Generate a Symmetric security key from the same
Key property you used in the Startup class. Two claims that are needed by any JWT
token, Sub and Jti, should be created. Into the Sub claim put the user name, and
into the Jti claim create a unique identifier for this user. Generating a Guid is a good
identifier for this field.
Next, you add a series of custom claims. In this simple example, create one claim
for each property in the AppUserAuth class. I'm sure you can see where you could
add claims by looping through a collection of Roles and/or Claims/Permissions from
a table. However, I wanted to keep this simple for this article. Notice I use
ToLower() to convert the "True" and "False" values to lower case. This keeps things
consistent with how JavaScript/TypeScript likes to express true and false.
Create a new JwtSecurityToken object and set the same properties you did in the
Startup class using the same values from the JwtSettings class. If you don't use the
same values, then they won't be able to be verified when the token is passed in
from Angular. Use the WriteToken() method of the JwtSecurityTokenHandler class
to base64 encode the resulting string. It is this base64 encoded string that is placed
into the BearerToken property in your user security object passed back to Angular.

Build a JSON Web Token

Security in Angular 19
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

protected string BuildJwtToken()
{
 SymmetricSecurityKey key = new SymmetricSecurityKey(
 Encoding.UTF8.GetBytes(_settings.Key));

 // Create standard JWT claims
 List<Claim> jwtClaims = new List<Claim>();
 jwtClaims.Add(new Claim(JwtRegisteredClaimNames.Sub,
 _user.UserName));
 jwtClaims.Add(new Claim(JwtRegisteredClaimNames.Jti,
 Guid.NewGuid().ToString()));

 // Add custom claims
 jwtClaims.Add(new Claim("isAuthenticated",
 _auth.IsAuthenticated.ToString().ToLower()));
 jwtClaims.Add(new Claim("canAccessProducts",
 _auth.CanAccessProducts.ToString().ToLower()));
 jwtClaims.Add(new Claim("canAddProduct",
 _auth.CanAddProduct.ToString().ToLower()));
 jwtClaims.Add(new Claim("canSaveProduct",
 _auth.CanSaveProduct.ToString().ToLower()));
 jwtClaims.Add(new Claim("canAccessCategories",
 _auth.CanAccessCategories.ToString().ToLower()));
 jwtClaims.Add(new Claim("canAddCategory",
 _auth.CanAddCategory.ToString().ToLower()));

 // Create the JwtSecurityToken object
 var token = new JwtSecurityToken(
 issuer: _settings.Issuer,
 audience: _settings.Audience,
 claims: jwtClaims,
 notBefore: DateTime.UtcNow,
 expires: DateTime.UtcNow.AddMinutes(
 _settings.MinutesToExpiration),
 signingCredentials: new SigningCredentials(key,
 SecurityAlgorithms.HmacSha256)
);

 // Create a string representation of the Jwt token
 return new JwtSecurityTokenHandler().WriteToken(token); ;
}

Call the BuildJwtToken() Method
Locate the BuildUserAuthObject() method and add code to call this BuildJwtToken()
method and assign the string result to the BearerToken property.

Security in Angular

20 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

protected void BuildUserAuthObject()
{
 if (_user != null)
 {
 _auth = CreateMockSecurityObjects()
 .Where(u => u.UserName ==
 _user.UserName).FirstOrDefault();
 }

 if (_auth == null)
 {
 _auth = new AppUserAuth();
 }
 else {
 // Create JWT Bearer Token
 _auth.BearerToken = BuildJwtToken();
 }
}

Try it Out
Save all your changes and start debugging on the PtcApi project. If you are logged
in to the Angular application, click the Logout menu. Enter either "psheriff" or
"bjones" and a password of "P@ssw0rd" and you should see a screen that looks
similar to Figure 3.

Figure 3: Decode the bearerToken at the jwt.io website.

Build a JSON Web Token

Security in Angular 21
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

If you wish to see what makes up the bearerToken property, you can decode the
value at the www.jwt.io website. Copy the bearerToken on the login page to the
clipboard. Open a browser window and go to www.jwt.io. Scroll down on the page
until you see a box labeled "Encoded". Delete what is in there and paste in your
bearer token. You should immediately see the payload data with all your data as
shown in Figure 4.

Figure 4: Decode your bearer token at www.jwt.io.

Try it Out
Click on the Products menu and you should now see a generic 401 Unauthorized
message in the developer tools console window that looks like Figure 5. The reason
for this error is the server does not know that you are the same person that just
logged in. You must pass back the bearer token on each Web API call to prove to
the server that you have permission to call the API.

http://www.jwt.io/
http://www.jwt.io/

Security in Angular

22 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 5: Unless you pass the bearer token back to the server, you will get a 401 error from
any secured Web API method.

Add Headers to Product Service
To avoid the status code 401, you must pass the bearer token on each Web API
call from your Angular code. You are going to learn how to automatically add the
token to every call, but first, just modify the Get() method in the product service
class. Open the product.service.ts file and modify the constructor to inject the
SecurityService.

constructor(private http: HttpClient,
 private securityService: SecurityService) { }

Add code in the getProducts() method to create a new HttpHeaders object. Once
you have instantiated this object, call the set() method and pass in "Authorization"
as the header name. The data to pass in this header is the word 'Bearer ' followed
by a space, then the bearer token itself. Add a second parameter to the HttpClient's
get() method and pass an object with a property named headers and the
HttpHeaders object you created as the value for that property.

HTTP Interceptor

Security in Angular 23
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

getProducts(): Observable<Product[]> {
 let httpOptions = new HttpHeaders()
 .set('Authorization', 'Bearer ' +
 this.securityService.securityObject.bearerToken);

 return this.http.get<Product[]>(API_URL,
 { headers: httpOptions });
}

Try it Out
Save your changes, go to the browser and login as "psheriff", click on the Products
menu and you should see the product data displayed. This is because the server
has authenticated your token and now knows who you are. Thus, you are granted
access to the Get() method in the ProductController.

HTTP Interceptor
Instead of having to add the same headers in front of every Web API call, create an
HTTP Interceptor class to place custom headers into each Web API call in Angular.
Right mouse-click on the \security folder and add a file named http-
interceptor.module.ts. I am not going to explain this code as it is well documented
at http://bit.ly/2GYt1H3, and you should find many blog posts about this on the
internet.
The one thing I do want to point out is that you are retrieving the bearer token from
local storage. You might be wondering why you don't inject a SecurityService object
into this class and retrieve it from the SecurityService object like in all the other
components. You can't have an HTTP interceptor injected with the SecurityService
since the security service class also uses the HttpClient. This causes a recursion
error.
If you remember from earlier you added code in the login() method of the
SecurityService class to store the bearer token into local storage. Now you know
the reason for that code.

http://bit.ly/2GYt1H3

Security in Angular

24 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

import { Injectable, NgModule } from '@angular/core';
import { Observable } from 'rxjs';
import { HttpEvent, HttpInterceptor, HttpHandler,
 HttpRequest } from '@angular/common/http';
import { HTTP_INTERCEPTORS } from '@angular/common/http';

@Injectable()
export class HttpRequestInterceptor implements HttpInterceptor {
 intercept(req: HttpRequest<any>, next: HttpHandler):
 Observable<HttpEvent<any>> {
 var token = localStorage.getItem("bearerToken");

 if(token) {
 const newReq = req.clone(
 {
 headers: req.headers.set('Authorization',
 'Bearer ' + token)
 });

 return next.handle(newReq);
 }
 else {
 return next.handle(req);
 }
 }
};

@NgModule({
 providers: [
 { provide: HTTP_INTERCEPTORS,
 useClass: HttpRequestInterceptor,
 multi: true }
]
})
export class HttpInterceptorModule { }

In order to use this HTTP Interceptor class, register it with your AppModule class.
Open the app.module.ts file and add this new module to the imports property.

imports: [
 BrowserModule,
 FormsModule,
 HttpClientModule,
 AppRoutingModule,
 HttpInterceptorModule
],

Open the product.service.ts file and change the getProducts() method back to
what you had originally. Remove the code that creates the HttpHeaders, and
passing this as a second parameter to the get() method. The getProducts() method
should now look like the following.

Add Security Policy

Security in Angular 25
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

getProducts(): Observable<Product[]> {
 return this.http.get<Product[]>(API_URL);
}

Try it Out
Save your changes, go to your browser, login as "psheriff" and try accessing the
Products menu. You should still be getting data from the product controller. This
verifies that the HTTP Interceptor class is working.

Add Security Policy
The [Authorize] attribute just ensures that a user is authenticated. However, for
some Web API methods, you may wish to restrict access based on roles or
claims/permissions. This is accomplished by adding Authorization to the services of
the .NET Core Web API project.
Open the Startup.cs file and add the following code in the ConfigureServices
method, just under the code you added earlier for adding authentication. For each
property you have in your AppUserAuth object you can add policy objects and
specify the value the user must have.

services.AddAuthorization(cfg =>
{
 // NOTE: The claim key and value are case-sensitive
 cfg.AddPolicy("CanAccessProducts", p =>
 p.RequireClaim("CanAccessProducts", "true"));
});

Once you create your claims, you may add the Policy property to the Authorize
attribute to check for any of the claim names. For example, on the
ProductController.Get() method you can add the following code to the Authorize
attribute to restrict usage on this method to only those users whose
CanAccessProducts property is set to true.

[Authorize(Policy = "CanAccessProducts")]

Try it Out
Open the SecurityManager.cs file in the PtcApi project and locate the
CreateMockSecurityObjects() method. Modify the claim "CanAccessProducts" to be
a "false" value for the "PSheriff" user.

Security in Angular

26 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Open the app-routing.module.ts file and remove the route guard for the 'products'
path.

{
 path: 'products',
 component: ProductListComponent
},

Save your changes and start the debugging on the PtcApi project. Go back to the
browser, login as "psheriff" and type in http://localhost:4200/products directly into
the address bar and you should now get a 403-Forbidden error. Put the route guard
back and reset the CanAccessProducts property to a "true" value in the
SecurityManager class.

Summary
In this article you built Web API calls to authenticate users and provide an
authorization object back to Angular. In addition, you configured your .NET Core
Web API project to use the JSON Web Token system to secure your Web API calls.
You learned to send bearer tokens to Angular and have Angular send those tokens
back using an HTTP Interceptor class.

Sample Code
You can download the complete sample code at my website.
http://www.pdsa.com/downloads. Choose "PDSA/Fairway Blog", then "
Security in Angular - Part 2" from the drop-down.

http://localhost:4200/products
http://www.pdsa.com/downloads

	Security in Angular - Part 2
	The Starting Application
	Create Application Security Classes
	AppUser Class
	Create AppUserAuth Class

	Build Security Manager Class
	Add CreateMockUsers() Method
	Write CreateMockSecurityObjects() Method
	Write BuildUserAuthObject Method
	Add ValidateUser Method

	Add Security Controller
	Call Web API
	Modify Login Component
	Try it Out

	Authorizing Access to Web API Call
	Secure Product Get() Method
	Try it Out

	Add JWT Configuration
	Add JWT Package
	Add Bearer Token Check
	Add JWT Settings to Configuration
	Store JWT Information in appsettings.json
	Add JwtSettings Class
	Read the Settings
	Create a Singleton for the JWT Settings
	Register JWT as the Authentication Provider
	Inject Settings into SecurityController
	Accept Settings in SecurityManager

	Build a JSON Web Token
	Call the BuildJwtToken() Method
	Try it Out
	Try it Out

	Add Headers to Product Service
	Try it Out

	HTTP Interceptor
	Try it Out

	Add Security Policy
	Try it Out

	Summary
	Sample Code

