
Read Songs from iTunes

Have you ever wanted to retrieve the list of songs from your iTunes library? Getting
songs from iTunes is not easy. In fact, since Apple stopped supplying their COM
component for reading from their iTunes library, about the only way to get song data
is to export the library into an XML file, then parse the XML. In this blog post you are
going to learn to parse the XML using the classes contained in the System.Xml.Linq
namespace.

Get Songs from iTunes
To generate an XML file, open iTunes and export the complete library by choosing
File > Library > Export Library… from the menu as shown in Figure 1. When
prompted, type in the name Library.xml and store this file somewhere on your hard
drive.

Read Songs from iTunes

2 Read Songs from iTunes
Copyright © 2014-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: Export your iTunes to an XML file.

iTunes XML
If you open the Library.xml file using Notepad++ or some other editor that reads
large files, you should see a structure that looks like the following.

Get Songs from iTunes

Read Songs from iTunes 3
Copyright © 2014-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
 <dict>
 <key>Major Version</key>
 <integer>1</integer>
 <key>Minor Version</key>
 <integer>1</integer>
 <key>Date</key>
 <date>2018-08-07T13:36:15Z</date>
 <key>Application Version</key>
 <string>12.8.0.150</string>
 <key>Features</key>
 <integer>5</integer>
 <key>Show Content Ratings</key>
 <true/>
 <key>Music Folder</key>
 <string>file://localhost/P:/Music/</string>
 <key>Library Persistent ID</key>
 <string>0472F8AA57FD57AE</string>
 <key>Tracks</key>
 <dict>
 <key>3063</key>
 <dict>
 <key>Track ID</key>
 <integer>16445</integer>
 <key>Name</key>
 <string>When I'm Gone</string>
 <key>Artist</key>
 <string>3 Doors Down</string>
 <key>Album Artist</key>
 <string>3 Doors Down</string>
 <key>Composer</key>
 <string>Brad Arnold/C. "DJ Smooth" Henderson/Matt
Roberts/Todd Harrell</string>
 <key>Album</key>
 <string>Away From The Sun</string>
 <key>Genre</key>
 <string>Rock</string>
 <key>Kind</key>
 <string>AAC audio file</string>
 <key>Size</key>
 <integer>4298973</integer>
 <key>Total Time</key>
 <integer>261919</integer>
 <key>Disc Number</key>
 <integer>1</integer>
 <key>Disc Count</key>
 <integer>1</integer>
 <key>Track Number</key>
 <integer>1</integer>
 <key>Year</key>
 <integer>2002</integer>
 <key>Date Modified</key>
 <date>2013-06-11T21:24:14Z</date>

Read Songs from iTunes

4 Read Songs from iTunes
Copyright © 2014-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

 <key>Date Added</key>
 <date>2017-08-30T01:53:27Z</date>
 <key>Bit Rate</key>
 <integer>128</integer>
 <key>Sample Rate</key>
 <integer>44100</integer>
 <key>Play Count</key>
 <integer>54</integer>
 <key>Play Date</key>
 <integer>3572238134</integer>
 <key>Play Date UTC</key>
 <date>2017-03-13T13:22:14Z</date>
 <key>Skip Count</key>
 <integer>2</integer>
 <key>Skip Date</key>
 <date>2014-06-18T12:51:59Z</date>
 <key>Rating</key>
 <integer>80</integer>
 <key>Album Rating</key>
 <integer>80</integer>
 <key>Album Rating Computed</key>
 <true/>
 <key>Normalization</key>
 <integer>5347</integer>
 <key>Artwork Count</key>
 <integer>1</integer>
 <key>Persistent ID</key>
 <string>AACFF77027CEFA7F</string>
 <key>Track Type</key>
 <string>File</string>
 <key>Location</key>
 <string>
 file://localhost/P:/Music/3%20Doors%20Down/
 Away%20From%20The%20Sun/01%20When%20I'm%20Gone.m4a
 </string>
 <key>File Folder Count</key>
 <integer>4</integer>
 <key>Library Folder Count</key>
 <integer>1</integer>
 </dict>

 // Repeat <key> and <DICT> elements for each song
 <key>3064</key>
 <dict>
 // Song information here
 </dict>

 </dict>
 </dict>
</plist>

The XML that is generated is not very well structured. All song information is stored
as sibling elements under a <dict> element. To retrieve the song name for instance,
you first need to locate the <key>Name</key> element, then go to the next node to
retrieve the song name.

Apple iTunes Class Library

Read Songs from iTunes 5
Copyright © 2014-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

When you look at the XML data you sometimes see that some of the fields have
percent signs (%), followed by some numbers, in them. In some fields, Apple
converts spaces to a "%20", but they don't in others. They also convert backslashes
to forward slashes. Ampersands (&) are converted to "&" and so on. Since
these characters could show up a song name, artist, album, and especially in the
physical path and file name you are going to need a method to convert these
characters into human-readable characters. You are going to build a method to
perform this conversion.

Apple iTunes Class Library
Now that you understand the format of the XML file produced by iTunes, it is time to
create a class library to read the song data from this file. Create a new C# class
library in Visual Studio named AppleTunesLibrary. Into this library add two C#
classes named Song and AppleSongReader. The Song class contains properties
to hold the song data you wish to retrieve from the XML file. The AppleSongReader
class contains properties and methods used to read the XML file. You can see the
overall structure of these classes in Figure 2.

Read Songs from iTunes

6 Read Songs from iTunes
Copyright © 2014-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 2: The overall structure of the AppleTunesLibrary.

Song Class
Add several properties to the Song class to represent many of the various elements
in the XML file. Feel free to add more or less properties depending on what you
wish to see from your iTunes library.

Apple iTunes Class Library

Read Songs from iTunes 7
Copyright © 2014-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

public class Song
{
 public string SongName { get; set; }
 public string Artist { get; set; }
 public string Album { get; set; }
 public string Genre { get; set; }
 public int Year { get; set; }
 public string Location { get; set; }
}

Apple Song Reader Class
The AppleSongReader class the following properties and methods within it.

Properties Description

Songs Holds a generic list of Song objects.

_songElements A list of XElement objects that represent all elements of one song.

Methods Description

GetAllSongs Call this method by passing in a full path and file name to the library.xml file
exported from iTunes. This method fills in the Songs property.

GetValue<T> Pass in a key to locate, and this method returns the value for that key.

CleanString Pass in the value from the XML and this method converts all special characters
to human-readable characters.

Let's build this class little by little. First, build the overall structure for this class so it
looks like the following.

Read Songs from iTunes

8 Read Songs from iTunes
Copyright © 2014-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

public class AppleSongReader
{
 public List<Song> Songs { get; set; }
 protected List<XElement> _songElements = null;

 public virtual List<Song> GetAllSongs(string libraryFile)
 {

 return this.Songs;
 }

 protected virtual T GetValue<T>(string keyName, T defaultValue)
 {
 T ret;

 return ret;
 }

 protected virtual string CleanString(string value)
 {
 return value;
 }
}

The CleanString() Method
Next, fill in the CleanString() method. This method performs several Replace()
methods on the string value passed in. Each Replace() method looks for the special
characters such as "%20" and converts them to a human readable character. Feel
free to add additional conversions for any special characters you find in your song
list.

Apple iTunes Class Library

Read Songs from iTunes 9
Copyright © 2014-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

protected virtual string CleanString(string value)
{
 return value.Replace("file://localhost/", "")
 .Replace("%20", " ")
 .Replace("/", @"\")
 .Replace("&", "&")
 .Replace("&", "&")
 .Replace("<", "<")
 .Replace(">", ">")
 .Replace("%23", "#")
 .Replace("%25", "%")
 .Replace("%5B", "[")
 .Replace("%5D", "]")
 .Replace("%C2%AD", "----")
 .Replace("%C2%A1", "¡")
 .Replace("%C3%A0", "à")
 .Replace("%C3%A1", "á")
 .Replace("%C3%A4", "ä")
 .Replace("%C3%A8", "è")
 .Replace("%C3%A9", "é")
 .Replace("%C3%AD", "í")
 .Replace("%C3%AF", "ï")
 .Replace("%C3%B3", "ó")
 .Replace("%C3%B6", "ö")
 .Replace("%C3%BC", "ü")
 .Replace("%C3%9F", "ß")
 .Replace("%C5%91", "ő")
 .Replace("%E5%B9%BD", "幽")
 .Replace("%E5%A5%B3", "女");
}

The GetValue<T>() Method
The GetValue() method is responsible for locating the <key> element, and returning
the value found in the next element. For example, if you have following XML:

<key>Name</key>
<string>When I'm Gone</string>

To retrieve the song name you call the GetValue() method using the following code:

song.SongName = GetValue<string>("Name", "Unknown Name");

In the above code snippet, what is placed into the SongName property is the value
"When I'm Gone". The second parameter passed into this method is a value to
return if the key is not found. Below is the code you should write in the GetValue()
method.

Read Songs from iTunes

10 Read Songs from iTunes
Copyright © 2014-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

protected virtual T GetValue<T>(string keyName, T defaultValue)
{
 T ret;
 string value = null;
 XElement elem;

 // Attempt to locate key
 elem = _songElements.Find(k => k.Value == keyName);
 if (elem != null) {
 // Get value from next sibling node and clean it up
 value = CleanString(((XElement)elem.NextNode).Value);
 }

 // Convert value into return type
 if (value != null) {
 try {
 ret = (T)Convert.ChangeType(value, typeof(T));
 }
 catch {
 ret = (T)defaultValue;
 }
 }
 else {
 ret = defaultValue;
 }

 return ret;
}

The GetAllSongs() Method
Now that you have the supporting methods created, it is time to build the
GetAllSongs() method. Add the code shown below to the GetAllSongs() method. An
explanation for this method follows the code.

Apple iTunes Class Library

Read Songs from iTunes 11
Copyright © 2014-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

public virtual List<Song> GetAllSongs(string libraryFile)
{
 Song song = null;

 // Load iTunes XML library
 XElement doc = XElement.Load(libraryFile);

 // Create song collection
 Songs = new List<Song>();

 // Get all songs
 IEnumerable<XElement> songs =
 from dict in doc.Elements("dict")
 .Elements("dict")
 .Elements("dict")
 select dict;

 foreach (XElement songNode in songs) {
 // Get all children elements for song
 _songElements = songNode.Elements().ToList();

 // Get song information
 song = new Song();
 song.SongName = GetValue<string>("Name", "Unknown Name");
 song.Artist = GetValue<string>("Artist", "Unknown Artist");
 song.Album = GetValue<string>("Album", "Unknown Album");
 song.Genre = GetValue<string>("Genre", "Unknown Genre");
 song.Year = GetValue<int>("Year", 1900);
 song.Location = GetValue<string>("Location", "Unknown
Location");

 // Add song to collection
 this.Songs.Add(song);
 }

 // Sort songs by artist
 Songs = Songs.OrderBy("Artist").ToList();

 return this.Songs;
}

The first thing this method does it to load the library XML file using the
XElement.Load() method.

// Load iTunes XML library
XElement doc = XElement.Load(libraryFile);

Next, you locate all songs by reading all the third <dict> elements in the XML
document object. You can use LINQ to XML to select all elements and place them
into a variable named songs.

Read Songs from iTunes

12 Read Songs from iTunes
Copyright © 2014-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

// Get all songs
IEnumerable<XElement> songs =
 from dict in doc.Elements("dict")
 .Elements("dict")
 .Elements("dict")
 select dict;

With the list of elements in the songs variable, iterate over those elements using a
foreach statement.

foreach (XElement songNode in songs) {
 // Get all children elements for song
 _songElements = songNode.Elements().ToList();

 // Get song information
 song = new Song();
 song.SongName = GetValue<string>("Name", "Unknown Name");
 song.Artist = GetValue<string>("Artist", "Unknown Artist");
 song.Album = GetValue<string>("Album", "Unknown Album");
 song.Genre = GetValue<string>("Genre", "Unknown Genre");
 song.Year = GetValue<int>("Year", 1900);
 song.Location = GetValue<string>("Location", "Unknown Location");

 // Add song to collection
 this.Songs.Add(song);
}

Within the foreach loop, retrieve all child XElement objects from the current song
node. Assign this list of elements to the field named _songElements. This field is
used in the GetValue() method to locate the key and value from the sibling XML
elements. A new Song object is created and the data from each element is filled into
the corresponding properties. The newly created Song object is added to the Songs
list, and this logic is repeated for each song in the XML.
After all songs have been loaded into the Songs list, sort the list by the Artist
property. Sorting is performed using the OrderBy() method. This method comes
from the System.Linq.Dynamic.dll. Add this DLL to your class library project using
the NuGet Package Manager.

// Sort songs by artist
Songs = Songs.OrderBy("Artist").ToList();

WPF Application
To try out this new class library you just created, add a new WPF project to your
solution. Create a new WPF window to display all your song data like that shown in
Figure 3.

WPF Application

Read Songs from iTunes 13
Copyright © 2014-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Figure 3: Create a WPF window to display all your songs from iTunes.

XAML for the WPF Window
Below is the XAML needed to build the WPF window shown in Figure 3.

Read Songs from iTunes

14 Read Songs from iTunes
Copyright © 2014-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

<Window x:Class="DecodeiTunes.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-
compatibility/2006"
 xmlns:local="clr-namespace:DecodeiTunes"
 mc:Ignorable="d"
 FontSize="16"
 Title="iTunes Songs"
 WindowStartupLocation="CenterScreen">
 <Window.Resources>
 <Style TargetType="Label">
 <Setter Property="Margin"
 Value="4" />
 </Style>
 <Style TargetType="TextBox">
 <Setter Property="Margin"
 Value="4" />
 </Style>
 <Style TargetType="Button">
 <Setter Property="Margin"
 Value="4" />
 </Style>
 <Style TargetType="ListView">
 <Setter Property="Margin"
 Value="4" />
 </Style>
 </Window.Resources>
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Label Grid.Column="0">Location of Library.xml</Label>
 <TextBox x:Name="txtFileName"
 Grid.Column="1"></TextBox>
 <Button x:Name="btnGetSongs"
 Grid.Row="1"
 Content="Get Songs"
 Click="btnGetSongs_Click" />
 <ListView x:Name="lstSongs"
 ItemsSource="{Binding}"
 ScrollViewer.HorizontalScrollBarVisibility="Visible"
 ScrollViewer.VerticalScrollBarVisibility="Visible"
 Grid.Row="2"
 Grid.ColumnSpan="2">
 <ListView.View>
 <GridView>

WPF Application

Read Songs from iTunes 15
Copyright © 2014-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

 <GridViewColumn Header="Song Name"
 Width="Auto"
 DisplayMemberBinding="{Binding
Path=SongName}" />
 <GridViewColumn Header="Artist"
 Width="Auto"
 DisplayMemberBinding="{Binding
Path=Artist}" />
 <GridViewColumn Header="Album"
 Width="Auto"
 DisplayMemberBinding="{Binding
Path=Album}" />
 <GridViewColumn Header="Genre"
 Width="Auto"
 DisplayMemberBinding="{Binding
Path=Genre}" />
 <GridViewColumn Header="Year"
 Width="Auto"
 DisplayMemberBinding="{Binding Path=Year}"
/>
 <GridViewColumn Header="File Path/Name"
 Width="Auto"
 DisplayMemberBinding="{Binding
Path=Location}" />
 </GridView>
 </ListView.View>
 </ListView>
 <Label x:Name="lblSongCount"
 Content="Total Songs"
 Grid.Row="3" />
 <Label x:Name="lblCount"
 Content="0"
 Grid.Column="1"
 Grid.Row="3" />
 </Grid>
</Window>

WPF Window Code
Notice there is a button on this window to call a Click event named
btnGetSongs_Click(). In this click event is where you write the code to connect to
the AppleTunesLibrary.AppleSongReader class. Be sure to add a reference from
the WPF project to the Class Library project. Below is the code you enter for this
click event.

Read Songs from iTunes

16 Read Songs from iTunes
Copyright © 2014-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

private void btnGetSongs_Click(object sender, RoutedEventArgs e)
{
 AppleSongReader reader = new AppleSongReader();

 // Read all iTunes songs
 Mouse.OverrideCursor = Cursors.Wait;
 reader.GetAllSongs(txtFileName.Text);
 Mouse.OverrideCursor = null;

 // Place song list into ListView control
 lstSongs.DataContext = reader.Songs;

 // Report total songs read
 lblCount.Content = reader.Songs.Count.ToString("###,###");
}

Summary
In this blog post you learned to export your iTunes library to an XML file. You wrote
code to parse the XML file and extract the data about each of your songs. A song
object is created with your song data and each song object is placed into a list of
song objects. This list of songs is then displayed on a WPF window.

Sample Code
You can download the complete sample code at my website.
http://www.pdsa.com/downloads. Choose "PDSA/Fairway Blog", then "Read
Songs from iTunes" from the drop-down.

http://www.pdsa.com/downloads

	Read Songs from iTunes
	Get Songs from iTunes
	iTunes XML

	Apple iTunes Class Library
	Song Class
	Apple Song Reader Class
	The CleanString() Method
	The GetValue<T>() Method
	The GetAllSongs() Method

	WPF Application
	XAML for the WPF Window
	WPF Window Code

	Summary
	Sample Code

