

Introduction to Unit Testing with Visual
Studio

Every developer needs to test their code, or have it tested by someone. Many
developers are not great at testing their own code. The main reason is we
tend to test only the “happy path” through the functionality that we wrote. We
often avoid testing the boundaries of our code such as invalid inputs,
exceptions that might occur, etc. One way to become a better tester is to start
writing unit tests. While it takes more time up-front to write unit tests, it saves
a ton of time when you must regression test changes to existing features.
Starting with Visual Studio 2008, Microsoft added a unit testing framework
right into Visual Studio. There are also several third-part testing frameworks
you may use. In this blog post, you are going to learn the basics of using the
unit test framework in Visual Studio.

Our Method to Test
For this blog post, you are going to build a method that checks to see if a file
exists. You are then going to build unit tests to check each type of input you
can pass to this method.
To start, create a new Class Library project in Visual Studio using C#. Set the
name of this class library project to MyClasses. Rename the Class1.cs file
created by Visual Studio to FileProcess. Add a method in this class called
FileExists as shown in the following code snippet.

Introduction to Unit Testing

2 Introduction to Unit Testing
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

public bool FileExists(string fileName) {
 if (string.IsNullOrEmpty(fileName)) {
 throw new ArgumentNullException("fileName");
 }

 return File.Exists(fileName);
}

This is a very simple method, yet it requires at least three unit test methods to
ensure this method works with all possible inputs. The three possible values
you can pass to the fileName parameter are:

• A file name that exists

• A file name that does not exist

• A null or empty string

Create a Test Project
Right mouse click on your MyClasses solution and choose Add | New
Project. From the list of templates, click on the Visual C# | Test | Unit Test
Project. Set the Name to MyClassesTest. Click the OK button. Rename the
UnitTest1.cs file to FileProcessTest.cs. You are going to test the method in
your MyClasses class library, so you need to add a reference to that project.
Right mouse click on the References folder in the MyClassesTest project and
select MyClasses. Add a using statement at the top of the FileProcessTest.cs
file.

using MyClasses;

Create Stubs for all Tests
As you have identified three different tests, it is a good idea to go ahead and
write all three methods right away so you don’t forget what you want to test.
The code shown below shows how you structure your test class.

 Create a Test Project

Introduction to Unit Testing 3
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

[TestClass]
public class FileProcessTest
{
 [TestMethod]
 public void FileNameDoesExist() {
 Assert.Inconclusive();
 }

 [TestMethod]
 public void FileNameDoesNotExist() {
 Assert.Inconclusive();
 }

 [TestMethod]
 public void
 FileNameNullOrEmpty_ThrowsArgumentNullException() {
 Assert.Inconclusive();
 }
}

The first thing you notice about this class is the presence of the [TestClass]
attribute before the class definition. This attribute informs the unit test
framework that this class is one that can be included in the testing process.
Next, you notice that each method is prefixed with a [TestMethod] attribute.
Again, this is to inform the unit test framework that this is a test method that
needs to run. Within each method, call the Assert.Inconclusive() method. This
informs the testing framework that you have not written any code for this test
method. This is not a success, or a failure, of the test. This shows up as a
skipped test in the Test Explorer window. The advantage of using this method
is this gives you a checklist of the tests that you still need to write.
After adding this code, right mouse click in your code window and choose
Run Tests from the context-sensitive menu that appears. After the code runs,
a Test Explorer window appears with the results of the test(s) as shown in
Figure 1.

Introduction to Unit Testing

4 Introduction to Unit Testing
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: Skipped tests are the result of the Inconclusive method call

Write the Tests
It is now time to start writing the code in the unit tests to create each of the
three possible inputs identified for this method. The first one is to test that a
file exists. Modify the FileNameDoesExist method shown below. Feel free to
change the drive letter, path and file name to a file that exists on your
computer.

[TestMethod]
public void FileNameDoesExist() {
 FileProcess fp = new FileProcess();
 bool fromCall;

 fromCall = fp.FileExists(@"C:\Windows\Regedit.exe");

 Assert.IsTrue(fromCall);
}

After adding this code, right mouse click in your code window and choose
Run Tests from the context-sensitive menu that appears. After the code runs,
a Test Explorer window appears with the results of the test. If the file exists,
the window should display something that looks like Figure 2.

 Handling Exceptions

Introduction to Unit Testing 5
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 2: Test results appear in the Test Explorer window

The next method to write is to test for a file that does not exist. Modify the
FileNameDoesNotExist method in your FileProcessTest class to test this
condition. Write the code shown in the following code snippet.

[TestMethod]
public void FileNameDoesNotExist() {
 FileProcess fp = new FileProcess();
 bool fromCall;

 fromCall = fp.FileExists(@"C:\NotExists.bad");

 Assert.IsFalse(fromCall);
}

Once again, run these tests and you should now see two passed tests in your
Test Explorer window.

Handling Exceptions
You should always test for any exceptions being thrown from your methods.
There are two ways to handle a thrown exception; add a catch block in your
test method or add an [ExpectedException] attribute. In the FileExists method
an ArgumentNullException is thrown if a null or blank value is passed to the
method. Let’s take a look at the two ways to handle this thrown exception.

Introduction to Unit Testing

6 Introduction to Unit Testing
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Add a test to the FileProcessTest class named
FileNameNullOrEmpty_CausesArgumentNullException_UsingAttribute.
Add an [ExpectedException] attribute after the [TestMethod] attribute on this
method as shown in the following code snippet.

[TestMethod]
[ExpectedException(typeof(ArgumentNullException))]
public void FileNameNullOrEmpty_
 CausesArgumentNullException_UsingAttribute () {
 FileProcess fp = new FileProcess();

 fp.FileExists("");
}

Run this test and you should see that this test passes.
The second way to handle this thrown exception is to wrap up the call to the
FileExists method within a try…catch block in your test method. The catch
block should check to see if the exception is a ArgumentNullException. If it is,
then the test received the correct return value. If no exception was thrown, or
any other kind of exception is returned from FileExists, call the Assert.Fail()
method to let the unit test framework that this test failed. Modify the
FileNameNullOrEmpty_ThrowsArgumentNullException method as shown
in the following code snippet.

[TestMethod]
public void FileNameNullOrEmpty_ThrowsArgumentNullException()
{
 FileProcess fp = new FileProcess();

 try {
 fp.FileExists("");
 }
 catch (ArgumentNullException) {
 // Test was a success
 return;
 }

 // Fail the test
 Assert.Fail("Call to FileExists() did NOT throw
 an ArgumentNullException.");
}

Run the unit tests one more time, and you should now see four passed tests
in the Test Explorer window.

 Summary

Introduction to Unit Testing 7
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Summary
Visual Studio makes it easy to get started creating unit tests. Take advantage
of the unit test framework built-in to Visual Studio. It is important to think of as
many ways as possible to break your code. Then, write all the unit tests to
test that your code does not break. Use the ExpectedException attribute to
help you with exceptions that are thrown from your methods.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Introduction to
Unit Testing.

http://www.pdsa.com/downloads

	Introduction to Unit Testing with Visual Studio
	Our Method to Test
	Create a Test Project
	Create Stubs for all Tests
	Write the Tests

	Handling Exceptions
	Summary
	Sample Code

